Cardiovascular risk analysis by means of pulse morphology and clustering methodologies

Article


Gomes de Almeida, V., Borba, J., Pereira, H., Pereira, T., Correia, C., Pêgo, M. and Cardoso, J. 2014. Cardiovascular risk analysis by means of pulse morphology and clustering methodologies. Computer Methods and Programs in Biomedicine. 117 (2), pp. 257-266. https://doi.org/10.1016/j.cmpb.2014.06.010
TypeArticle
TitleCardiovascular risk analysis by means of pulse morphology and clustering methodologies
AuthorsGomes de Almeida, V., Borba, J., Pereira, H., Pereira, T., Correia, C., Pêgo, M. and Cardoso, J.
Abstract

The purpose of this study was the development of a clustering methodology to deal with arterial pressure waveform (APW) parameters to be used in the cardiovascular risk assessment. One hundred sixteen subjects were monitored and divided into two groups. The first one (23 hypertensive subjects) was analyzed using APW and biochemical parameters, while the remaining 93 healthy subjects were only evaluated through APW parameters. The expectation maximization (EM) and k-means algorithms were used in the cluster analysis, and the risk scores (the Framingham Risk Score (FRS), the Systematic COronary Risk Evaluation (SCORE) project, the Assessing cardiovascular risk using Scottish Intercollegiate Guidelines Network (ASSIGN) and the PROspective Cardiovascular Münster (PROCAM)), commonly used in clinical practice were selected to the cluster risk validation. The result from the clustering risk analysis showed a very significant correlation with ASSIGN (r = 0.582, p < 0.01) and a significant correlation with FRS (r = 0.458, p < 0.05). The results from the comparison of both groups also allowed to identify the cluster with higher cardiovascular risk in the healthy group. These results give new insights to explore this methodology in future scoring trials.

KeywordsArterial stiffness; Pulse wave analysis; Risk scores; Clustering analysis
PublisherElsevier Science
JournalComputer Methods and Programs in Biomedicine
ISSN0169-2607
Electronic1872-7565
Publication dates
Online25 Jun 2014
Print01 Nov 2014
Publication process dates
Deposited05 Mar 2018
Accepted17 Jun 2014
Output statusPublished
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cmpb.2014.06.010
Web of Science identifierWOS:000343091400020
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/877zy

  • 41
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Hierarchical time series forecast in electrical grids
Gomes de Almeida, V., Ribeiro, R. and Gama, J. 2016. Hierarchical time series forecast in electrical grids. 7th International Conference on Information Science and Applications (ICISA) 2016. Ho Chi Minh City 15 - 18 Feb 2016 Singapore Springer Singapore. pp. 995-1005 https://doi.org/10.1007/978-981-10-0557-2_95
Assessment of the pulse wave variability for a new non-invasive device
Gomes de Almeida, V., Pereira, H., Pereira, T., Ferreira, L., Correia, C. and Cardoso, J. 2014. Assessment of the pulse wave variability for a new non-invasive device. The International Conference on Health Informatics. Vilamoura, Portugal 07 - 09 Nov 2013 Springer, Cham. pp. 240-243 https://doi.org/10.1007/978-3-319-03005-0_61
Detecting dynamical changes in vital signs using switching Kalman filter
Gomes de Almeida, V. and Nabney, I. 2017. Detecting dynamical changes in vital signs using switching Kalman filter. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Jeju, South Korea 11 - 15 Jul 2017 IEEE. pp. 2223-2226 https://doi.org/10.1109/EMBC.2017.8037296
Early warnings of heart rate deterioration
Gomes de Almeida, V. and Nabney, I. 2016. Early warnings of heart rate deterioration. 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC). Orlando, Florida, USA 16 - 20 Aug 2016 Institute of Electrical and Electronics Engineers (IEEE). pp. 940-943 https://doi.org/10.1109/EMBC.2016.7590856
Measures for combining prediction intervals uncertainty and reliability in forecasting
Gomes de Almeida, V. and Gama, J. 2016. Measures for combining prediction intervals uncertainty and reliability in forecasting. Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M. and Żołnierek, A. (ed.) 9th International Conference on Computer Recognition Systems CORES 2015. Wroclaw, Poland 25 - 27 May 2015 Cham, Switzerland Springer. pp. 147-157 https://doi.org/10.1007/978-3-319-26227-7_14
Prediction intervals for electric load forecast: evaluation for different profiles
Gomes de Almeida, V. and Gama, J. 2015. Prediction intervals for electric load forecast: evaluation for different profiles. 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP). Porto, Portugal 11 - 16 Sep 2015 Institute of Electrical and Electronics Engineers (IEEE). pp. 1-6 https://doi.org/10.1109/ISAP.2015.7325539
Signal (stream) synchronization with white noise sources, in biomedical applications
Vaz, P., Gomes de Almeida, V., Ferreira, L., Correia, C. and Cardoso, J. 2015. Signal (stream) synchronization with white noise sources, in biomedical applications. Biomedical Signal Processing and Control. 18, pp. 394-400. https://doi.org/10.1016/j.bspc.2015.02.015
Reproducibility of pulse wave analysis and pulse wave velocity in healthy subjects
Pereira, T., Santos, I., Pereira, T., Santos, H., Gomes de Almeida, V., Pereira, H., Correia, C. and Cardoso, J. 2014. Reproducibility of pulse wave analysis and pulse wave velocity in healthy subjects. 7th International Conference on Bio-inspired Systems and Signal Processing (BIOSTEC 2014). Angers, France 03 - 06 Mar 2014 Portugal SCITEPRESS - Science and Technology Publications. pp. 221-228 https://doi.org/10.5220/0004802502210228
Collaborative wind power forecast
Gomes de Almeida, V. and Gama, J. 2014. Collaborative wind power forecast. Bouchachia, H. (ed.) Third International Conference, ICAIS 2014. Bournemouth, UK 08 - 10 Sep 2014 Cham, Switzerland Springer. pp. 162-171 https://doi.org/10.1007/978-3-319-11298-5_17