Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness.

Article


Wildeboer, D., Naus, S., Sang, Q., Bartsch, J. and Pagenstecher, A. 2006. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. Journal of Neuropathology and Experimental Neurology. 65 (5), pp. 516-527.
TypeArticle
TitleMetalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness.
AuthorsWildeboer, D., Naus, S., Sang, Q., Bartsch, J. and Pagenstecher, A.
Abstract

Patients with primary brain tumors have bleak prognoses and there is an urgent desire to identify new markers for sensitive diagnosis and new therapeutic targets for effective treatment. A family of proteins, the disintegrin and metalloproteinases (ADAMs or adamalysins), are cell surface and extracellular multidomain proteins implicated in cell-cell signaling, cell adhesion, and cell migration. Their putative biological and pathological roles make them candidates for promoting tumor growth and malignancy. We investigated the expression levels of 12 cerebrally expressed ADAM genes in human primary brain tumors (astrocytoma WHO grade I-III, glioblastoma WHO grade IV, oligoastrocytoma WHO grade II and III, oligodendroglioma WHO grade II and III, ependymoma WHO grade II and III, and primitive neuroectodermal tumor WHO grade IV) using real-time PCR. The mRNAs of the five ADAMs 8, 12, 15, 17, and 19 were significantly upregulated. The ADAM8 and ADAM19 proteins were mainly located in tumor cells and in some tumors in endothelia of blood vessels. In brain tumor tissue, ADAM8 and ADAM19 undergo activation by prodomain removal resulting in active proteases. By using specific peptide substrates for ADAM8 and ADAM19, respectively, we demonstrated that the proteases exert enhanced proteolytic activity in those tumor specimens with the highest expression levels. In addition, expression levels and the protease activities of ADAM8 and ADAM19 correlated with invasive activity of glioma cells, indicating that ADAM8 and ADAM19 may play a significant role in tumor invasion that may be detrimental to patients survival.

KeywordsADAMs, Brain neoplasms, Invasive gliomas, Matrix metalloproteinases
Research GroupBiophysics and Bioengineering group
PublisherLippincott, Williams and Wilkins
JournalJournal of Neuropathology and Experimental Neurology
ISSN0022-3069
Publication dates
PrintMay 2006
Publication process dates
Deposited28 Jan 2010
Output statusPublished
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/8226x

  • 37
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year
Hassard, F., Vu, M., Rahimzadeh, S., Castro-Gutierrez, V., Stanton, I., Burczynska, B., Wildeboer, D., Baio, G., Brown, M., Garelick, H., Hofman, J., Kasprzyk-Hordern, B., Majeed, A., Priest, S., Denise, H., Khalifa, M., Bassano, I., Wade, M., Grimsley, J., Lundy, L., Singer, A. and Di Cesare, M. 2023. Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year. PLoS ONE. 18 (5). https://doi.org/10.1371/journal.pone.0286259
Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach
Castro-Gutierrez, V., Hassard, F., Vu, M., Leitao, R., Burczynska, B., Wildeboer, D., Stanton, I., Rahimzadeh, S., Baio, G., Garelick, H., Hofman, J., Kasprzyk-Hordern, B., Kwiatkowska, R., Majeed, A., Priest, S., Grimsley, J., Lundy, L., Singer, A. and Di Cesare, M. 2022. Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach. PLoS ONE. 17 (6). https://doi.org/10.1371/journal.pone.0270168
Characterization of the complete mitochondrial genome of Diplostomum baeri
Landeryou, T., Ropiquet, A., Kett, S., Wildeboer, D. and Lawton, S. 2020. Characterization of the complete mitochondrial genome of Diplostomum baeri. Parasitology International. 79. https://doi.org/10.1016/j.parint.2020.102166
Competition of As and other Group 15 elements for surface binding sites of an extremophilic Acidomyces acidophilus isolated from a historical tin mining site
Chan, W., Wildeboer, D., Garelick, H. and Purchase, D. 2018. Competition of As and other Group 15 elements for surface binding sites of an extremophilic Acidomyces acidophilus isolated from a historical tin mining site. Extremophiles. 22 (5), pp. 795-809. https://doi.org/10.1007/s00792-018-1039-2
Metal water-sediment interactions and impacts on an urban ecosystem
Lundy, L., Alves, L., Revitt, D. and Wildeboer, D. 2017. Metal water-sediment interactions and impacts on an urban ecosystem. 14th IWA/IAHR International Conference on Urban Drainage. Prague, Czech Republic 10 - 15 Sep 2017 pp. 148-156
Metal water-sediment interactions and impacts on an urban ecosystem
Lundy, L., Alves, L., Revitt, D. and Wildeboer, D. 2017. Metal water-sediment interactions and impacts on an urban ecosystem. International Journal of Environmental Research and Public Health. 14 (7), pp. 1-12. https://doi.org/10.3390/ijerph14070722
A proteomic study on the responses to arsenate stress by an acidophilic fungal strain Acidomyces acidophilus WKC1
Chan, W., Wildeboer, D., Garelick, H. and Purchase, D. 2016. A proteomic study on the responses to arsenate stress by an acidophilic fungal strain Acidomyces acidophilus WKC1. Biotechnology World Convention. Sao Paulo, Brazil 15 - 17 Aug 2016 OMICS International. pp. 35-35 https://doi.org/10.4172/2155-952X.C1.058
Environmental waters and E. coli as a marker, including pathogenic and resistant strains
Price, R. and Wildeboer, D. 2017. Environmental waters and E. coli as a marker, including pathogenic and resistant strains. in: Samie, A. (ed.) Escherichia coli - Recent Advances on Physiology, Pathogenesis and Biotechnological Applications InTech.
Mycoremediation of heavy metal/metalloid-contaminated soil: current understanding and future prospects
Chan, W., Wildeboer, D., Garelick, H. and Purchase, D. 2016. Mycoremediation of heavy metal/metalloid-contaminated soil: current understanding and future prospects. in: Purchase, D. (ed.) Fungal Applications in Sustainable Environmental Biotechnology Cham, Switzerland Springer. pp. 249-272
Methods of analysis for bacterial contamination in environmental waters
Price, R. and Wildeboer, D. 2015. Methods of analysis for bacterial contamination in environmental waters. in: McCoy, G. (ed.) Coliforms: occurrence, detection methods and environmental impact Nova Science Publishers.
Investigating arsenic resistance in fungi from tin-mining soil and the possible interaction between arsenic and tin/antimony
Chan, W., Wildeboer, D., Garelick, H. and Purchase, D. 2014. Investigating arsenic resistance in fungi from tin-mining soil and the possible interaction between arsenic and tin/antimony. 10th International Mycological Congress. Bangkok, Thailand 03 - 08 Aug 2014
Tumor Necrosis Factor-α (TNF-α) regulates shedding of TNF-α receptor 1 by the metalloprotease-disintegrin ADAM8: evidence for a protease-regulated feedback loop in neuroprotection
Bartsch, J., Wildeboer, D., Koller, G., Naus, S., Rittger, A., Moss, M., Minai, Y. and Jockusch, H. 2010. Tumor Necrosis Factor-α (TNF-α) regulates shedding of TNF-α receptor 1 by the metalloprotease-disintegrin ADAM8: evidence for a protease-regulated feedback loop in neuroprotection. Journal of Neuroscience. 30 (36), pp. 12210-12218. https://doi.org/10.1523/JNEUROSCI.1520-10.2010
ADAM8/MS2/CD156a: a metalloprotease-disintegrin involved in immune responses
Bartsch, J., Naus, S., Rittger, A., Schlomann, U. and Wildeboer, D. 2005. ADAM8/MS2/CD156a: a metalloprotease-disintegrin involved in immune responses. in: Hooper, N. and Lendeckel, U. (ed.) The ADAM family of Proteases Dordrecht, Netherlands Springer.
Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death
Naus, S., Richter, M., Wildeboer, D., Moss, M., Schachner, M. and Bartsch, J. 2004. Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. Journal of Biological Chemistry. 279 (16), pp. 16083-16090. https://doi.org/10.1074/jbc.M400560200
The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion
Schlomann, U., Wildeboer, D., Webster, A., Antropova, O., Zeuschner, D., Knight, C., Docherty, A., Lambert, M., Skelton, L., Jockusch, H. and Bartsch, J. 2002. The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. Journal of Biological Chemistry. 277 (50), pp. 48210-48219. https://doi.org/10.1074/jbc.M203355200
Escherichia coli contamination of the river Thames in different seasons and weather conditions
Amirat, L., Wildeboer, D., Abuknesha, R. and Price, R. 2012. Escherichia coli contamination of the river Thames in different seasons and weather conditions. Water and Environment Journal. 26 (4), pp. 482-489. https://doi.org/10.1111/j.1747-6593.2012.00308.x
Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds
Wildeboer, D., Hill, K., Jeganathan, F., Williams, D., Riddell, A., Price, P., Thomas, D., Stephens, P., Abuknesha, R. and Price, R. 2012. Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds. European Journal of Clinical Microbiology & Infectious Diseases. 31 (9), pp. 2183-2189. https://doi.org/10.1007/s10096-012-1553-6
Optimisation of the detection of bacterial proteases using adsorbed immunoglobulins as universal substrates
Abuknesha, R., Jeganathan, F., Wildeboer, D. and Price, R. 2010. Optimisation of the detection of bacterial proteases using adsorbed immunoglobulins as universal substrates. Talanta. 81 (4-5), pp. 1237-1244. https://doi.org/10.1016/j.talanta.2010.02.015
Detection of proteases using an immunochemical method with haptenylated–gelatin as a solid-phase substrate
Abuknesha, R., Jeganathan, F., DeGroot, R., Wildeboer, D. and Price, R. 2010. Detection of proteases using an immunochemical method with haptenylated–gelatin as a solid-phase substrate. Analytical and Bioanalytical Chemistry. 396 (7), pp. 2547-2558. https://doi.org/10.1007/s00216-010-3540-z
Rapid detection of Escherichia coli in water using a hand-held fluorescence detector
Wildeboer, D., Amirat, L., Price, R. and Abuknesha, R. 2010. Rapid detection of Escherichia coli in water using a hand-held fluorescence detector. Water Research. 44 (8), pp. 2621-2628. https://doi.org/10.1016/j.watres.2010.01.020
The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events
Moss, M., Bomar, M., Liu, Q., Sage, H., Dempsey, P., Lenhart, P., Gillispie, P., Stoeck, A., Wildeboer, D., Bartsch, J., Palmisano, R. and Zhou, P. 2007. The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. Journal of Biological Chemistry. 282 (49), pp. 35712-35721. https://doi.org/10.1074/jbc.M703231200
Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8.
Naus, S., Reipschläger, S., Wildeboer, D., Lichtenthaler, S., Mitterreiter, S., Guan, Z., Moss, M. and Bartsch, J. 2006. Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8. Biological Chemistry. 387 (3), pp. 337-346. https://doi.org/10.1515/BC.2006.045
Screening of herbal constituents for aromatase inhibitory activity
Paoletta, S., Steventon, G., Wildeboer, D., Ehrman, T., Hylands, P. and Barlow, D. 2008. Screening of herbal constituents for aromatase inhibitory activity. Bioorganic & Medicinal Chemistry. 16 (18), pp. 8466-8470. https://doi.org/10.1016/j.bmc.2008.08.034
Use of antibody–hapten complexes attached to optical sensor surfaces as a substrate for proteases: real-time biosensing of protease activity
Wildeboer, D., Jiang, P., Price, R., Yu, S., Jeganathan, F. and Abuknesha, R. 2010. Use of antibody–hapten complexes attached to optical sensor surfaces as a substrate for proteases: real-time biosensing of protease activity. Talanta. 81 (1-2), pp. 68-75. https://doi.org/10.1016/j.talanta.2009.11.036
Characterization of bacterial proteases with a panel of fluorescent peptide substrates
Wildeboer, D., Jeganathan, F., Price, R. and Abuknesha, R. 2009. Characterization of bacterial proteases with a panel of fluorescent peptide substrates. Analytical Biochemistry. 384 (2), pp. 321-328. https://doi.org/10.1016/j.ab.2008.10.004