Methods of analysis for bacterial contamination in environmental waters

Book chapter


Price, R. and Wildeboer, D. 2015. Methods of analysis for bacterial contamination in environmental waters. in: McCoy, G. (ed.) Coliforms: occurrence, detection methods and environmental impact Nova Science Publishers.
Chapter titleMethods of analysis for bacterial contamination in environmental waters
AuthorsPrice, R. and Wildeboer, D.
Abstract

Water pollution by faecal contamination is a serious problem due to the potential for contracting disease if the water is consumed untreated. Coliform bacteria Escherichia coli and Enterococci are used as primary indicators of contamination in fresh and marine water respectively. The presence and levels of these organisms are indicative of the presence of a number of pathogenic organisms of animal origin and thus for a potential threat to human health. The acceptable levels of indicator organisms are defined by legislation and vary for drinking, river, well and marine water.
This review will consider currently employed methods of analysis for coliform bacteria, compare them with recently developed procedures and evaluate advantages and limitations of different methods. Emphasis will be placed on methods which can be used on-site with laboratory procedures as confirmatory procedures. Established culture methods use chromogenic substrates for β-glucuronidase to identify E. coli and β-galactosidase to detect Enterococci . Rapid non-culture based fluorimetric procedures have been developed that can be used on-site. In addition to culture and biochemical procedures, advances have been made in developing genomic, proteomic and metabolomic methods. Methods must be quantitative in order to comply with legal norms and in this regard the potential involvement of biosensor technology will be of great value in successfully transferring laboratory procedures to the field.
The review will conclude with a recommendation of the most valuable laboratory and on-site methods for water analysis given the constraints of the current legal framework governing acceptable water quality.

Book titleColiforms: occurrence, detection methods and environmental impact
EditorsMcCoy, G.
PublisherNova Science Publishers
SeriesBacteriology Research Developments
ISBN
Hardcover9781634835770
Publication dates
PrintNov 2015
Publication process dates
Deposited04 Dec 2015
Output statusPublished
Web address (URL)https://www.novapublishers.com/catalog/product_info.php?products_id=55820&osCsid=dd44fec15e08ab71d0e4e9aad3a12ed7
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/86145

  • 33
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year
Hassard, F., Vu, M., Rahimzadeh, S., Castro-Gutierrez, V., Stanton, I., Burczynska, B., Wildeboer, D., Baio, G., Brown, M., Garelick, H., Hofman, J., Kasprzyk-Hordern, B., Majeed, A., Priest, S., Denise, H., Khalifa, M., Bassano, I., Wade, M., Grimsley, J., Lundy, L., Singer, A. and Di Cesare, M. 2023. Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year. PLoS ONE. 18 (5). https://doi.org/10.1371/journal.pone.0286259
Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach
Castro-Gutierrez, V., Hassard, F., Vu, M., Leitao, R., Burczynska, B., Wildeboer, D., Stanton, I., Rahimzadeh, S., Baio, G., Garelick, H., Hofman, J., Kasprzyk-Hordern, B., Kwiatkowska, R., Majeed, A., Priest, S., Grimsley, J., Lundy, L., Singer, A. and Di Cesare, M. 2022. Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach. PLoS ONE. 17 (6). https://doi.org/10.1371/journal.pone.0270168
Characterization of the complete mitochondrial genome of Diplostomum baeri
Landeryou, T., Ropiquet, A., Kett, S., Wildeboer, D. and Lawton, S. 2020. Characterization of the complete mitochondrial genome of Diplostomum baeri. Parasitology International. 79. https://doi.org/10.1016/j.parint.2020.102166
Competition of As and other Group 15 elements for surface binding sites of an extremophilic Acidomyces acidophilus isolated from a historical tin mining site
Chan, W., Wildeboer, D., Garelick, H. and Purchase, D. 2018. Competition of As and other Group 15 elements for surface binding sites of an extremophilic Acidomyces acidophilus isolated from a historical tin mining site. Extremophiles. 22 (5), pp. 795-809. https://doi.org/10.1007/s00792-018-1039-2
Metal water-sediment interactions and impacts on an urban ecosystem
Lundy, L., Alves, L., Revitt, D. and Wildeboer, D. 2017. Metal water-sediment interactions and impacts on an urban ecosystem. 14th IWA/IAHR International Conference on Urban Drainage. Prague, Czech Republic 10 - 15 Sep 2017 pp. 148-156
Metal water-sediment interactions and impacts on an urban ecosystem
Lundy, L., Alves, L., Revitt, D. and Wildeboer, D. 2017. Metal water-sediment interactions and impacts on an urban ecosystem. International Journal of Environmental Research and Public Health. 14 (7), pp. 1-12. https://doi.org/10.3390/ijerph14070722
A proteomic study on the responses to arsenate stress by an acidophilic fungal strain Acidomyces acidophilus WKC1
Chan, W., Wildeboer, D., Garelick, H. and Purchase, D. 2016. A proteomic study on the responses to arsenate stress by an acidophilic fungal strain Acidomyces acidophilus WKC1. Biotechnology World Convention. Sao Paulo, Brazil 15 - 17 Aug 2016 OMICS International. pp. 35-35 https://doi.org/10.4172/2155-952X.C1.058
Environmental waters and E. coli as a marker, including pathogenic and resistant strains
Price, R. and Wildeboer, D. 2017. Environmental waters and E. coli as a marker, including pathogenic and resistant strains. in: Samie, A. (ed.) Escherichia coli - Recent Advances on Physiology, Pathogenesis and Biotechnological Applications InTech.
Mycoremediation of heavy metal/metalloid-contaminated soil: current understanding and future prospects
Chan, W., Wildeboer, D., Garelick, H. and Purchase, D. 2016. Mycoremediation of heavy metal/metalloid-contaminated soil: current understanding and future prospects. in: Purchase, D. (ed.) Fungal Applications in Sustainable Environmental Biotechnology Cham, Switzerland Springer. pp. 249-272
Investigating arsenic resistance in fungi from tin-mining soil and the possible interaction between arsenic and tin/antimony
Chan, W., Wildeboer, D., Garelick, H. and Purchase, D. 2014. Investigating arsenic resistance in fungi from tin-mining soil and the possible interaction between arsenic and tin/antimony. 10th International Mycological Congress. Bangkok, Thailand 03 - 08 Aug 2014
Tumor Necrosis Factor-α (TNF-α) regulates shedding of TNF-α receptor 1 by the metalloprotease-disintegrin ADAM8: evidence for a protease-regulated feedback loop in neuroprotection
Bartsch, J., Wildeboer, D., Koller, G., Naus, S., Rittger, A., Moss, M., Minai, Y. and Jockusch, H. 2010. Tumor Necrosis Factor-α (TNF-α) regulates shedding of TNF-α receptor 1 by the metalloprotease-disintegrin ADAM8: evidence for a protease-regulated feedback loop in neuroprotection. Journal of Neuroscience. 30 (36), pp. 12210-12218. https://doi.org/10.1523/JNEUROSCI.1520-10.2010
ADAM8/MS2/CD156a: a metalloprotease-disintegrin involved in immune responses
Bartsch, J., Naus, S., Rittger, A., Schlomann, U. and Wildeboer, D. 2005. ADAM8/MS2/CD156a: a metalloprotease-disintegrin involved in immune responses. in: Hooper, N. and Lendeckel, U. (ed.) The ADAM family of Proteases Dordrecht, Netherlands Springer.
Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death
Naus, S., Richter, M., Wildeboer, D., Moss, M., Schachner, M. and Bartsch, J. 2004. Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. Journal of Biological Chemistry. 279 (16), pp. 16083-16090. https://doi.org/10.1074/jbc.M400560200
The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion
Schlomann, U., Wildeboer, D., Webster, A., Antropova, O., Zeuschner, D., Knight, C., Docherty, A., Lambert, M., Skelton, L., Jockusch, H. and Bartsch, J. 2002. The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. Journal of Biological Chemistry. 277 (50), pp. 48210-48219. https://doi.org/10.1074/jbc.M203355200
Escherichia coli contamination of the river Thames in different seasons and weather conditions
Amirat, L., Wildeboer, D., Abuknesha, R. and Price, R. 2012. Escherichia coli contamination of the river Thames in different seasons and weather conditions. Water and Environment Journal. 26 (4), pp. 482-489. https://doi.org/10.1111/j.1747-6593.2012.00308.x
Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds
Wildeboer, D., Hill, K., Jeganathan, F., Williams, D., Riddell, A., Price, P., Thomas, D., Stephens, P., Abuknesha, R. and Price, R. 2012. Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds. European Journal of Clinical Microbiology & Infectious Diseases. 31 (9), pp. 2183-2189. https://doi.org/10.1007/s10096-012-1553-6
Optimisation of the detection of bacterial proteases using adsorbed immunoglobulins as universal substrates
Abuknesha, R., Jeganathan, F., Wildeboer, D. and Price, R. 2010. Optimisation of the detection of bacterial proteases using adsorbed immunoglobulins as universal substrates. Talanta. 81 (4-5), pp. 1237-1244. https://doi.org/10.1016/j.talanta.2010.02.015
Detection of proteases using an immunochemical method with haptenylated–gelatin as a solid-phase substrate
Abuknesha, R., Jeganathan, F., DeGroot, R., Wildeboer, D. and Price, R. 2010. Detection of proteases using an immunochemical method with haptenylated–gelatin as a solid-phase substrate. Analytical and Bioanalytical Chemistry. 396 (7), pp. 2547-2558. https://doi.org/10.1007/s00216-010-3540-z
Rapid detection of Escherichia coli in water using a hand-held fluorescence detector
Wildeboer, D., Amirat, L., Price, R. and Abuknesha, R. 2010. Rapid detection of Escherichia coli in water using a hand-held fluorescence detector. Water Research. 44 (8), pp. 2621-2628. https://doi.org/10.1016/j.watres.2010.01.020
Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8.
Naus, S., Reipschläger, S., Wildeboer, D., Lichtenthaler, S., Mitterreiter, S., Guan, Z., Moss, M. and Bartsch, J. 2006. Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8. Biological Chemistry. 387 (3), pp. 337-346. https://doi.org/10.1515/BC.2006.045
Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness.
Wildeboer, D., Naus, S., Sang, Q., Bartsch, J. and Pagenstecher, A. 2006. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. Journal of Neuropathology and Experimental Neurology. 65 (5), pp. 516-527.
Screening of herbal constituents for aromatase inhibitory activity
Paoletta, S., Steventon, G., Wildeboer, D., Ehrman, T., Hylands, P. and Barlow, D. 2008. Screening of herbal constituents for aromatase inhibitory activity. Bioorganic & Medicinal Chemistry. 16 (18), pp. 8466-8470. https://doi.org/10.1016/j.bmc.2008.08.034
Use of antibody–hapten complexes attached to optical sensor surfaces as a substrate for proteases: real-time biosensing of protease activity
Wildeboer, D., Jiang, P., Price, R., Yu, S., Jeganathan, F. and Abuknesha, R. 2010. Use of antibody–hapten complexes attached to optical sensor surfaces as a substrate for proteases: real-time biosensing of protease activity. Talanta. 81 (1-2), pp. 68-75. https://doi.org/10.1016/j.talanta.2009.11.036
Characterization of bacterial proteases with a panel of fluorescent peptide substrates
Wildeboer, D., Jeganathan, F., Price, R. and Abuknesha, R. 2009. Characterization of bacterial proteases with a panel of fluorescent peptide substrates. Analytical Biochemistry. 384 (2), pp. 321-328. https://doi.org/10.1016/j.ab.2008.10.004
The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events
Moss, M., Bomar, M., Liu, Q., Sage, H., Dempsey, P., Lenhart, P., Gillispie, P., Stoeck, A., Wildeboer, D., Bartsch, J., Palmisano, R. and Zhou, P. 2007. The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. Journal of Biological Chemistry. 282 (49), pp. 35712-35721. https://doi.org/10.1074/jbc.M703231200