Application of activity theory to analysis of human-related accidents: method and case studies

Article


Yoon, Y., Ham, D. and Yoon, W. 2016. Application of activity theory to analysis of human-related accidents: method and case studies. Reliability Engineering and System Safety. 150, pp. 22-34. https://doi.org/10.1016/j.ress.2016.01.013
TypeArticle
TitleApplication of activity theory to analysis of human-related accidents: method and case studies
AuthorsYoon, Y., Ham, D. and Yoon, W.
Abstract

This study proposes a new approach to human-related accident analysis based on activity theory. Most of the existing methods seem to be insufficient for comprehensive analysis of human activity-related contextual aspects of accidents when investigating the causes of human errors. Additionally, they identify causal factors and their interrelationships with a weak theoretical basis. We argue that activity theory offers useful concepts and insights to supplement existing methods. The proposed approach gives holistic contextual backgrounds for understanding and diagnosing human-related accidents. It also helps identify and organise causal factors in a consistent, systematic way. Two case studies in Korean nuclear power plants are presented to demonstrate the applicability of the proposed method. Human Factors Analysis and Classification System (HFACS) was also applied to the case studies. The results of using HFACS were then compared with those of using the proposed method. These case studies showed that the proposed approach could produce a meaningful set of human activity-related contextual factors, which cannot easily be obtained by using existing methods. It can be especially effective when analysts think it is important to diagnose accident situations with human activity-related contextual factors derived from a theoretically sound model and to identify accident-related contextual factors systematically.

KeywordsAccident analysis; Accident model ; Human error ; Causal factors ; Activity theory ; Activity system model
PublisherElsevier
JournalReliability Engineering and System Safety
ISSN0951-8320
Electronic1879-0836
Publication dates
Online02 Feb 2016
Print01 Jun 2016
Publication process dates
Deposited13 Apr 2016
Accepted24 Jan 2016
Output statusPublished
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ress.2016.01.013
Web of Science identifierWOS:000373553800003
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/8638w

  • 32
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Use of a big data analysis technique for extracting HRA data from event investigation reports based on the Safety-II concept
Ham, D. and Park, J. 2020. Use of a big data analysis technique for extracting HRA data from event investigation reports based on the Safety-II concept. Reliability Engineering and System Safety. 194, pp. 1-15. https://doi.org/10.1016/j.ress.2018.07.033
A new approach to analysing human-related accidents by combined use of HFACS and activity theory-based method
Yoon, Y., Ham, D. and Yoon, W. 2017. A new approach to analysing human-related accidents by combined use of HFACS and activity theory-based method. Cognition, Technology and Work. 19 (4), pp. 759-783. https://doi.org/10.1007/s10111-017-0433-3
Modelling work domain knowledge with the combined use of abstraction hierarchy and living systems theory
Ham, D. 2015. Modelling work domain knowledge with the combined use of abstraction hierarchy and living systems theory. Cognition, Technology and Work. 17 (4), pp. 575-591. https://doi.org/10.1007/s10111-015-0338-y
A model-based framework for classifying and diagnosing usability problems
Ham, D. 2014. A model-based framework for classifying and diagnosing usability problems. Cognition, Technology and Work. 16 (3), pp. 373-388. https://doi.org/10.1007/s10111-013-0267-6
Development of a frequency-separated knob with variable change rates by rotation speed
Kim, H. and Ham, D. 2014. Development of a frequency-separated knob with variable change rates by rotation speed. Applied Ergonomics. 45 (6), pp. 1518-1529. https://doi.org/10.1016/j.apergo.2014.04.015
Model-based identification and use of task complexity factors of human integrated systems
Ham, D., Park, J. and Jung, W. 2012. Model-based identification and use of task complexity factors of human integrated systems. Reliability Engineering and System Safety. 100, pp. 33-47. https://doi.org/10.1016/j.ress.2011.12.019
A user study on curved edges in graph visualization
Xu, K., Rooney, C., Passmore, P., Ham, D. and Nguyen, P. 2012. A user study on curved edges in graph visualization. IEEE Transactions on Visualization and Computer Graphics. 18 (12), pp. 2449 -2456. https://doi.org/10.1109/TVCG.2012.189
Future design.
Wong, B. and Ham, D. 2008. Future design. in: Golightly, D., Rose, T., Bonner, J. and Boyd Davis, S. (ed.) Create2008: proceedings Ergonomics Society.
Framework and model of usability factors of mobile phones
Ham, D., Heo, J., Fossick, P., Wong, B., Park, S., Song, C. and Bradley, M. 2008. Framework and model of usability factors of mobile phones. in: Lumsden, J. (ed.) Handbook of research on user interface design and evaluation for mobile technology. Hershey, PA. Information Science Reference. pp. 877-896
Invent! Explore!
Brinkman, W., Ham, D. and Wong, B. 2007. Invent! Explore! in: Brinkman, W., Ham, D. and Wong, B. (ed.) Proceedings of the 14th European conference on cognitive ergonomics. New York ACM Press.
A framework for evaluating the usability of mobile phones based on multi-level, hierarchical model of usability factors
Heo, J., Ham, D., Park, S., Song, C. and Yoon, W. 2009. A framework for evaluating the usability of mobile phones based on multi-level, hierarchical model of usability factors. Interacting with Computers. 21 (4), pp. 263-275. https://doi.org/10.1016/j.intcom.2009.05.006
The training effects of principle knowledge on fault diagnosis performance.
Ham, D., Han, B. and Yoon, W. 2007. The training effects of principle knowledge on fault diagnosis performance. Human Factors and Ergonomics in Manufacturing.. 17 (3), pp. 263-282. https://doi.org/10.1002/hfm.20074
The effects of presenting functionally abstracted information in fault diagnosis tasks
Ham, D. and Yoon, W. 2001. The effects of presenting functionally abstracted information in fault diagnosis tasks. Reliability Engineering and System Safety, Elsevier Science. 73 (2), pp. 103-119. https://doi.org/10.1016/S0951-8320(01)00053-9
Design of information content and layout for process control based on goal-means domain analysis
Ham, D. and Yoon, W. 2001. Design of information content and layout for process control based on goal-means domain analysis. Cognition, Technology and Work. 3 (4), pp. 205-223. https://doi.org/10.1007/s10111-001-8003-z
MaRMI-III: a methodology for component-based development
Ham, D., Cho, J., Kim, J. and Ha, S. 2004. MaRMI-III: a methodology for component-based development. Electronics and Telecommunications Research Institute (ETRI) Journal. 26 (2), pp. 167-180. https://doi.org/10.4218/etrij.04.0103.0041
Experimental study on the effects of visualized functionally abstracted information on process control tasks
Ham, D., Yoon, W. and Han, B. 2008. Experimental study on the effects of visualized functionally abstracted information on process control tasks. Reliability Engineering and System Safety. 93 (2), pp. 254-270. https://doi.org/10.1016/j.ress.2006.12.003
Evaluation of human interaction with complex systems using a full-scope simulator: lessons learned and methodological issues
Ham, D., Park, J. and Jung, W. 2008. Evaluation of human interaction with complex systems using a full-scope simulator: lessons learned and methodological issues. International Journal of Human-Computer Interaction. 24 (4), pp. 361-384. https://doi.org/10.1080/10447310801971212