Combinatorial approaches to Hopf bifurcations in systems of interacting elements

Article


Angeli, D., Banaji, M. and Pantea, C. 2013. Combinatorial approaches to Hopf bifurcations in systems of interacting elements. Communications in Mathematical Sciences. 12 (6), pp. 1101-1133.
TypeArticle
TitleCombinatorial approaches to Hopf bifurcations in systems of interacting elements
AuthorsAngeli, D., Banaji, M. and Pantea, C.
Abstract

We describe combinatorial approaches to the question of whether families of real matrices admit pairs of nonreal eigenvalues passing through the imaginary axis. When the matrices arise as Jacobian matrices in the study of dynamical systems, these conditions provide necessary conditions for Hopf bifurcations to occur in parameterised families of such systems. The techniques depend on the spectral properties of additive compound matrices: in particular, we associate with a product of matrices a signed, labelled digraph termed a DSR^[2] graph, which encodes information about the second additive compound of this product. A condition on the cycle structure of this digraph is shown to rule out the possibility of nonreal eigenvalues with positive real part. The techniques developed are applied to systems of interacting elements termed “interaction networks”, of which networks of chemical reactions are a special case.

PublisherInternational Press
JournalCommunications in Mathematical Sciences
ISSN1539-6746
Publication process dates
Deposited23 Sep 2016
Accepted15 Aug 2013
Output statusPublished
Accepted author manuscript
Web address (URL)http://intlpress.com/site/pub/pages/journals/items/cms/_home/_main/
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/869wz

Download files


Accepted author manuscript
  • 17
    total views
  • 4
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Splitting reactions preserves nondegenerate behaviors in chemical reaction networks
Banaji, M. 2023. Splitting reactions preserves nondegenerate behaviors in chemical reaction networks. SIAM Journal on Applied Mathematics. 83 (2), pp. 748-769. https://doi.org/10.1137/22m1478392
The smallest bimolecular mass-action system with a vertical Andronov–Hopf bifurcation
Banaji, M., Boros, B. and Hofbauer, J. 2023. The smallest bimolecular mass-action system with a vertical Andronov–Hopf bifurcation. Applied Mathematics Letters. 143. https://doi.org/10.1016/j.aml.2023.108671
The smallest bimolecular mass action reaction networks admitting Andronov–Hopf bifurcation
Banaji, M. and Boros, B. 2023. The smallest bimolecular mass action reaction networks admitting Andronov–Hopf bifurcation. Nonlinearity. 36 (2), pp. 1398-1433. https://doi.org/10.1088/1361-6544/acb0a8
Estimates of pandemic excess mortality in India based on civil registration data
Banaji, M. and Gupta, A. 2022. Estimates of pandemic excess mortality in India based on civil registration data. PLOS Global Public Health. 2 (12), pp. 1-17. https://doi.org/10.1371/journal.pgph.0000803
Inheritance of oscillation in chemical reaction networks
Banaji, M. 2018. Inheritance of oscillation in chemical reaction networks. Applied Mathematics and Computation. 325, pp. 191-209. https://doi.org/10.1016/j.amc.2017.12.012
The inheritance of nondegenerate multistationarity in chemical reaction networks
Banaji, M. and Pantea, C. 2018. The inheritance of nondegenerate multistationarity in chemical reaction networks. SIAM Journal on Applied Mathematics. 78 (2), pp. 1105-1130. https://doi.org/10.1137/16M1103506
Cycle structure in SR and DSR graphs: implications for multiple equilibria and stable oscillation in chemical reaction networks
Banaji, M. 2012. Cycle structure in SR and DSR graphs: implications for multiple equilibria and stable oscillation in chemical reaction networks. in: Jensen, K., Donatelli, S. and Kleijn, J. (ed.) Transactions on Petri Nets and Other Models of Concurrency V Springer Berlin. Heidelberg.
P matrix properties, injectivity, and stability in chemical reaction systems
Banaji, M., Donnell, P. and Baigent, S. 2007. P matrix properties, injectivity, and stability in chemical reaction systems. SIAM Journal on Applied Mathematics. 67 (6), pp. 1523-1547. https://doi.org/10.1137/060673412
Monotonicity in chemical reaction systems
Banaji, M. 2009. Monotonicity in chemical reaction systems. Dynamical Systems. 24 (1), pp. 1-30. https://doi.org/10.1080/14689360802243813
Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems
Banaji, M. and Craciun, G. 2009. Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems. Advances in Applied Mathematics. 44 (2), pp. 168-184. https://doi.org/10.1016/j.aam.2009.07.003
Graph-theoretic conditions for injectivity of functions on rectangular domains
Banaji, M. 2010. Graph-theoretic conditions for injectivity of functions on rectangular domains. Journal of Mathematical Analysis and Applications. 370 (1), pp. 302-311. https://doi.org/10.1016/j.jmaa.2010.04.078
P-matrices and signed digraphs
Banaji, M. and Rutherford, C. 2010. P-matrices and signed digraphs. Discrete Mathematics. 311 (4), pp. 295-301. https://doi.org/10.1016/j.disc.2010.10.018
Global convergence in systems of differential equations arising from chemical reaction networks
Banaji, M. and Mierczyński, J. 2012. Global convergence in systems of differential equations arising from chemical reaction networks. Journal of Differential Equations. 254 (3), pp. 1359-1374. https://doi.org/10.1016/j.jde.2012.10.018
A graph-theoretic condition for irreducibility of a set of cone preserving matrices
Banaji, M. and Burbanks, A. 2013. A graph-theoretic condition for irreducibility of a set of cone preserving matrices. Linear Algebra and its Applications. 438 (11), pp. 4103-4113. https://doi.org/10.1016/j.laa.2013.01.029
Local and global stability of equilibria for a class of chemical reaction networks
Donnell, P. and Banaji, M. 2013. Local and global stability of equilibria for a class of chemical reaction networks. SIAM Journal on Applied Dynamical Systems. 12 (2), pp. 899-920. https://doi.org/10.1137/120898486
Some results on the structure and spectra of matrix-products
Banaji, M. and Rutherford, C. 2015. Some results on the structure and spectra of matrix-products. Linear Algebra and its Applications. 474, pp. 192-212. https://doi.org/10.1016/j.laa.2015.02.008
Some results on injectivity and multistationarity in chemical reaction networks
Banaji, M. and Pantea, C. 2016. Some results on injectivity and multistationarity in chemical reaction networks. SIAM Journal on Applied Dynamical Systems. 15 (2), pp. 807-869. https://doi.org/10.1137/15M1034441