Graph-theoretic conditions for injectivity of functions on rectangular domains

Article


Banaji, M. 2010. Graph-theoretic conditions for injectivity of functions on rectangular domains. Journal of Mathematical Analysis and Applications. 370 (1), pp. 302-311. https://doi.org/10.1016/j.jmaa.2010.04.078
TypeArticle
TitleGraph-theoretic conditions for injectivity of functions on rectangular domains
AuthorsBanaji, M.
Abstract

This paper presents sufficient graph-theoretic conditions for injectivity of collections of differentiable functions on rectangular subsets of R^n . The results have implications for the possibility of multiple fixed points of maps and flows. Well-known results on systems with signed Jacobians are shown to be easy corollaries of more general results presented here.

JournalJournal of Mathematical Analysis and Applications
ISSN0022-247X
Publication dates
Print04 May 2010
Publication process dates
Deposited23 Sep 2016
Accepted01 Mar 2010
Output statusPublished
Accepted author manuscript
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jmaa.2010.04.078
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/869x7

Download files


Accepted author manuscript
  • 17
    total views
  • 7
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Splitting reactions preserves nondegenerate behaviors in chemical reaction networks
Banaji, M. 2023. Splitting reactions preserves nondegenerate behaviors in chemical reaction networks. SIAM Journal on Applied Mathematics. 83 (2), pp. 748-769. https://doi.org/10.1137/22m1478392
The smallest bimolecular mass-action system with a vertical Andronov–Hopf bifurcation
Banaji, M., Boros, B. and Hofbauer, J. 2023. The smallest bimolecular mass-action system with a vertical Andronov–Hopf bifurcation. Applied Mathematics Letters. 143. https://doi.org/10.1016/j.aml.2023.108671
The smallest bimolecular mass action reaction networks admitting Andronov–Hopf bifurcation
Banaji, M. and Boros, B. 2023. The smallest bimolecular mass action reaction networks admitting Andronov–Hopf bifurcation. Nonlinearity. 36 (2), pp. 1398-1433. https://doi.org/10.1088/1361-6544/acb0a8
Estimates of pandemic excess mortality in India based on civil registration data
Banaji, M. and Gupta, A. 2022. Estimates of pandemic excess mortality in India based on civil registration data. PLOS Global Public Health. 2 (12), pp. 1-17. https://doi.org/10.1371/journal.pgph.0000803
Inheritance of oscillation in chemical reaction networks
Banaji, M. 2018. Inheritance of oscillation in chemical reaction networks. Applied Mathematics and Computation. 325, pp. 191-209. https://doi.org/10.1016/j.amc.2017.12.012
The inheritance of nondegenerate multistationarity in chemical reaction networks
Banaji, M. and Pantea, C. 2018. The inheritance of nondegenerate multistationarity in chemical reaction networks. SIAM Journal on Applied Mathematics. 78 (2), pp. 1105-1130. https://doi.org/10.1137/16M1103506
Cycle structure in SR and DSR graphs: implications for multiple equilibria and stable oscillation in chemical reaction networks
Banaji, M. 2012. Cycle structure in SR and DSR graphs: implications for multiple equilibria and stable oscillation in chemical reaction networks. in: Jensen, K., Donatelli, S. and Kleijn, J. (ed.) Transactions on Petri Nets and Other Models of Concurrency V Springer Berlin. Heidelberg.
P matrix properties, injectivity, and stability in chemical reaction systems
Banaji, M., Donnell, P. and Baigent, S. 2007. P matrix properties, injectivity, and stability in chemical reaction systems. SIAM Journal on Applied Mathematics. 67 (6), pp. 1523-1547. https://doi.org/10.1137/060673412
Monotonicity in chemical reaction systems
Banaji, M. 2009. Monotonicity in chemical reaction systems. Dynamical Systems. 24 (1), pp. 1-30. https://doi.org/10.1080/14689360802243813
Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems
Banaji, M. and Craciun, G. 2009. Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems. Advances in Applied Mathematics. 44 (2), pp. 168-184. https://doi.org/10.1016/j.aam.2009.07.003
P-matrices and signed digraphs
Banaji, M. and Rutherford, C. 2010. P-matrices and signed digraphs. Discrete Mathematics. 311 (4), pp. 295-301. https://doi.org/10.1016/j.disc.2010.10.018
Global convergence in systems of differential equations arising from chemical reaction networks
Banaji, M. and Mierczyński, J. 2012. Global convergence in systems of differential equations arising from chemical reaction networks. Journal of Differential Equations. 254 (3), pp. 1359-1374. https://doi.org/10.1016/j.jde.2012.10.018
A graph-theoretic condition for irreducibility of a set of cone preserving matrices
Banaji, M. and Burbanks, A. 2013. A graph-theoretic condition for irreducibility of a set of cone preserving matrices. Linear Algebra and its Applications. 438 (11), pp. 4103-4113. https://doi.org/10.1016/j.laa.2013.01.029
Local and global stability of equilibria for a class of chemical reaction networks
Donnell, P. and Banaji, M. 2013. Local and global stability of equilibria for a class of chemical reaction networks. SIAM Journal on Applied Dynamical Systems. 12 (2), pp. 899-920. https://doi.org/10.1137/120898486
Combinatorial approaches to Hopf bifurcations in systems of interacting elements
Angeli, D., Banaji, M. and Pantea, C. 2013. Combinatorial approaches to Hopf bifurcations in systems of interacting elements. Communications in Mathematical Sciences. 12 (6), pp. 1101-1133.
Some results on the structure and spectra of matrix-products
Banaji, M. and Rutherford, C. 2015. Some results on the structure and spectra of matrix-products. Linear Algebra and its Applications. 474, pp. 192-212. https://doi.org/10.1016/j.laa.2015.02.008
Some results on injectivity and multistationarity in chemical reaction networks
Banaji, M. and Pantea, C. 2016. Some results on injectivity and multistationarity in chemical reaction networks. SIAM Journal on Applied Dynamical Systems. 15 (2), pp. 807-869. https://doi.org/10.1137/15M1034441