Dr Murad Banaji


NameDr Murad Banaji
Job titleSenior Lecturer in Mathematics
Research institute
Primary appointmentDesign Engineering & Mathematics
ORCIDhttps://orcid.org/0000-0002-4983-0377
Contact categoryAcademic staff (past)

Research outputs

The smallest bimolecular mass-action system with a vertical Andronov–Hopf bifurcation

Banaji, M., Boros, B. and Hofbauer, J. 2023. The smallest bimolecular mass-action system with a vertical Andronov–Hopf bifurcation. Applied Mathematics Letters. 143. https://doi.org/10.1016/j.aml.2023.108671

Splitting reactions preserves nondegenerate behaviors in chemical reaction networks

Banaji, M. 2023. Splitting reactions preserves nondegenerate behaviors in chemical reaction networks. SIAM Journal on Applied Mathematics. 83 (2), pp. 748-769. https://doi.org/10.1137/22m1478392

The smallest bimolecular mass action reaction networks admitting Andronov–Hopf bifurcation

Banaji, M. and Boros, B. 2023. The smallest bimolecular mass action reaction networks admitting Andronov–Hopf bifurcation. Nonlinearity. 36 (2), pp. 1398-1433. https://doi.org/10.1088/1361-6544/acb0a8

Estimates of pandemic excess mortality in India based on civil registration data

Banaji, M. and Gupta, A. 2022. Estimates of pandemic excess mortality in India based on civil registration data. PLOS Global Public Health. 2 (12), pp. 1-17. https://doi.org/10.1371/journal.pgph.0000803

The inheritance of nondegenerate multistationarity in chemical reaction networks

Banaji, M. and Pantea, C. 2018. The inheritance of nondegenerate multistationarity in chemical reaction networks. SIAM Journal on Applied Mathematics. 78 (2), pp. 1105-1130. https://doi.org/10.1137/16M1103506

Inheritance of oscillation in chemical reaction networks

Banaji, M. 2018. Inheritance of oscillation in chemical reaction networks. Applied Mathematics and Computation. 325, pp. 191-209. https://doi.org/10.1016/j.amc.2017.12.012

Combinatorial approaches to Hopf bifurcations in systems of interacting elements

Angeli, D., Banaji, M. and Pantea, C. 2013. Combinatorial approaches to Hopf bifurcations in systems of interacting elements. Communications in Mathematical Sciences. 12 (6), pp. 1101-1133.

Some results on injectivity and multistationarity in chemical reaction networks

Banaji, M. and Pantea, C. 2016. Some results on injectivity and multistationarity in chemical reaction networks. SIAM Journal on Applied Dynamical Systems. 15 (2), pp. 807-869. https://doi.org/10.1137/15M1034441

Some results on the structure and spectra of matrix-products

Banaji, M. and Rutherford, C. 2015. Some results on the structure and spectra of matrix-products. Linear Algebra and its Applications. 474, pp. 192-212. https://doi.org/10.1016/j.laa.2015.02.008

Local and global stability of equilibria for a class of chemical reaction networks

Donnell, P. and Banaji, M. 2013. Local and global stability of equilibria for a class of chemical reaction networks. SIAM Journal on Applied Dynamical Systems. 12 (2), pp. 899-920. https://doi.org/10.1137/120898486

A graph-theoretic condition for irreducibility of a set of cone preserving matrices

Banaji, M. and Burbanks, A. 2013. A graph-theoretic condition for irreducibility of a set of cone preserving matrices. Linear Algebra and its Applications. 438 (11), pp. 4103-4113. https://doi.org/10.1016/j.laa.2013.01.029

Global convergence in systems of differential equations arising from chemical reaction networks

Banaji, M. and Mierczyński, J. 2012. Global convergence in systems of differential equations arising from chemical reaction networks. Journal of Differential Equations. 254 (3), pp. 1359-1374. https://doi.org/10.1016/j.jde.2012.10.018

Cycle structure in SR and DSR graphs: implications for multiple equilibria and stable oscillation in chemical reaction networks

Banaji, M. 2012. Cycle structure in SR and DSR graphs: implications for multiple equilibria and stable oscillation in chemical reaction networks. in: Jensen, K., Donatelli, S. and Kleijn, J. (ed.) Transactions on Petri Nets and Other Models of Concurrency V Springer Berlin. Heidelberg.

P-matrices and signed digraphs

Banaji, M. and Rutherford, C. 2010. P-matrices and signed digraphs. Discrete Mathematics. 311 (4), pp. 295-301. https://doi.org/10.1016/j.disc.2010.10.018

Graph-theoretic conditions for injectivity of functions on rectangular domains

Banaji, M. 2010. Graph-theoretic conditions for injectivity of functions on rectangular domains. Journal of Mathematical Analysis and Applications. 370 (1), pp. 302-311. https://doi.org/10.1016/j.jmaa.2010.04.078

Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems

Banaji, M. and Craciun, G. 2009. Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems. Advances in Applied Mathematics. 44 (2), pp. 168-184. https://doi.org/10.1016/j.aam.2009.07.003

Monotonicity in chemical reaction systems

Banaji, M. 2009. Monotonicity in chemical reaction systems. Dynamical Systems. 24 (1), pp. 1-30. https://doi.org/10.1080/14689360802243813

P matrix properties, injectivity, and stability in chemical reaction systems

Banaji, M., Donnell, P. and Baigent, S. 2007. P matrix properties, injectivity, and stability in chemical reaction systems. SIAM Journal on Applied Mathematics. 67 (6), pp. 1523-1547. https://doi.org/10.1137/060673412
  • 29
    total views of outputs
  • 14
    total downloads of outputs
  • 0
    views of outputs this month
  • 1
    downloads of outputs this month