Architecture and self-assembly of Clostridium sporogenes and Clostridium botulinum spore surfaces illustrate a general protective strategy across spore formers

Article


Janganan, T.K.,, Mullin, N., Dafis-Sagarmendi, A., Brunt, J., Tzokov, S.B., Stringer, S., Moir, A., Chaudhuri, R.R., Fagan, R.P., Hobbs, J.K. and Bullough, P.A. 2020. Architecture and self-assembly of Clostridium sporogenes and Clostridium botulinum spore surfaces illustrate a general protective strategy across spore formers. mSphere. 5 (4). https://doi.org/10.1128/msphere.00424-20
TypeArticle
TitleArchitecture and self-assembly of Clostridium sporogenes and Clostridium botulinum spore surfaces illustrate a general protective strategy across spore formers
AuthorsJanganan, T.K.,, Mullin, N., Dafis-Sagarmendi, A., Brunt, J., Tzokov, S.B., Stringer, S., Moir, A., Chaudhuri, R.R., Fagan, R.P., Hobbs, J.K. and Bullough, P.A.
Abstract

Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh “reducing” conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures.

IMPORTANCE Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly.

KeywordsBacillus anthracis; Bacillus cereus; Bacillus subtilis; Clostridium difficile; anaerobes; atomic force microscopy; botulism; disulfide bonding; electron microscopy; nanomaterials; protein structure-function; sporulation
Sustainable Development Goals3 Good health and well-being
Middlesex University ThemeHealth & Wellbeing
PublisherAmerican Society for Microbiology (ASM)
JournalmSphere
ISSN
Electronic2379-5042
Publication dates
Online01 Jul 2020
Print01 Jul 2020
Publication process dates
Submitted10 Jun 2020
Accepted12 Jun 2020
Deposited12 Nov 2024
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

© 2020 Janganan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Digital Object Identifier (DOI)https://doi.org/10.1128/msphere.00424-20
Permalink -

https://repository.mdx.ac.uk/item/1w65y8

  • 3
    total views
  • 1
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Genome sequence of the biocontrol agent Coniothyrium minitans Conio (IMI 134523)
Patel, D., Shittu, T.A., Baroncelli, R., Muthumeenakshi, S., Osborne, T.H., Janganan, T. and Sreenivasaprasad, S. 2021. Genome sequence of the biocontrol agent Coniothyrium minitans Conio (IMI 134523). Molecular Plant-Microbe Interactions. 34 (2), pp. 222-225. https://doi.org/10.1094/MPMI-05-20-0124-A
ATP-binding cassette transporter VcaM from Vibrio cholerae is dependent on the outer membrane factor family for its function
Lu, W.J., Lin, H.J., Janganan, T.K., Li, C.Y., Chin, W.C., Bavro, V.N. and Lin, H.T.V. 2018. ATP-binding cassette transporter VcaM from Vibrio cholerae is dependent on the outer membrane factor family for its function. International Journal of Molecular Sciences. 19 (4). https://doi.org/10.3390/ijms19041000
Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains
Janganan, T.K., Mullin, N., Stringer, S., Fagan, R.P., Hobbs, J.K., Moir, A. and Bullough, P.A. 2016. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains. Food Microbiology. 59, pp. 205-212. https://doi.org/10.1016/j.fm.2016.06.003
A Gβ protein and the TupA co-regulator bind to protein kinase a Tpk2 to act as antagonistic molecular switches of fungal morphological changes
Janganan T.K., Chen, G., Chen, D., Menino, J.F., Rodrigues, F., Borges-Walmsley, M.I. and Walmsley, A.R. 2015. A Gβ protein and the TupA co-regulator bind to protein kinase a Tpk2 to act as antagonistic molecular switches of fungal morphological changes. PLoS ONE. 10 (9). https://doi.org/10.1371/journal.pone.0136866
Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump
Janganan T.K., Bavro, V.N., Zhang, L., Borges-Walmsley, M.I. and Walmsley, A.R. 2013. Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump. Molecular Microbiology. 88 (3), pp. 590-602. https://doi.org/10.1111/mmi.12211
Opening of the outer membrane protein channel in tripartite efflux pumps is induced by interaction with the membrane fusion partner
Janganan, T.K., Zhang, L., Barrera, N.P., Bavro, V.N., Vinkovic, D.M., Robinson, C.V., Borges-Walmsley, M.I. and Walmsley, A.R. 2011. Opening of the outer membrane protein channel in tripartite efflux pumps is induced by interaction with the membrane fusion partner. Journal of Biological Chemistry. 286 (7), pp. 5484-5493. https://doi.org/10.1074/jbc.M110.187658
Evidence for the assembly of a bacterial tripartite multidrug pump with a stoichiometry of 3: 6: 3
Janganan T.K., Bavro, V.N., Zhang, L., Vinkovic, D.M., Barrera, N.P., Robinson, C.V., Borges-Walmsley, M.I. and Walmsley, A.R. 2011. Evidence for the assembly of a bacterial tripartite multidrug pump with a stoichiometry of 3: 6: 3. Journal of Biological Chemistry. 286 (30), pp. 26900-26912. https://doi.org/10.1074/jbc.M111.246595Als
The regulation of the CAMP signalling pathway in the human pathogenic fungus, Paracoccidioides brasiliensis
Janganan, T.K. 2008. The regulation of the CAMP signalling pathway in the human pathogenic fungus, Paracoccidioides brasiliensis. PhD thesis Durham University School of Biosciences
The cAMP pathway is important for controlling the morphological switch to the pathogenic yeast form of Paracoccidioides brasiliensis
Chen, D., Janganan, T.K., Chen, G., Marques, E.R., Kress, M.R., Goldman, G.H., Walmsley, A.R. and Borges-Walmsley, M.I. 2007. The cAMP pathway is important for controlling the morphological switch to the pathogenic yeast form of Paracoccidioides brasiliensis. Molecular Microbiology. 65 (3), pp. 761-779. https://doi.org/10.1111/j.1365-2958.2007.05824.x