Exogenous TERC alone can enhance proliferative potential, telomerase activity and telomere length in lymphocytes from dyskeratosis congenita patients

Article


Kirwan, M., Beswick, R., Vulliamy, T., Nathwani, A., Walne, A., Casimir, C. and Dokal, I. 2009. Exogenous TERC alone can enhance proliferative potential, telomerase activity and telomere length in lymphocytes from dyskeratosis congenita patients. British Journal of Haematology. 144 (5), pp. 771-81. https://doi.org/10.1111/j.1365-2141.2008.07516.x
TypeArticle
TitleExogenous TERC alone can enhance proliferative potential, telomerase activity and telomere length in lymphocytes from dyskeratosis congenita patients
AuthorsKirwan, M., Beswick, R., Vulliamy, T., Nathwani, A., Walne, A., Casimir, C. and Dokal, I.
Abstract

Dyskeratosis congenita (DC) is an inherited multi-system disorder characterised by muco-cutaneous abnormalities, bone marrow failure and a predisposition to malignancy. Bone marrow failure is the principal cause of mortality and is thought to be the result of premature cell death in the haematopoietic compartment because DC cells age prematurely and tend to have short telomeres. DC is genetically heterogeneous and patients have mutations in genes that encode components of the telomerase complex (DKC1, TERC, TERT, NOP10 and NHP2), and telomere shelterin complex (TINF2), both important in telomere maintenance. Here, we transduced primary T lymphocytes and B lymphocyte lines established from patients with TERC and DKC1 mutations with wild type TERC-bearing lentiviral vectors. We found that transduction with exogenous TERC alone was capable of increasing telomerase activity in mutant T lymphocytes and B lymphocyte lines and improved the survival and thus overall growth of B-lymphocyte lines over a prolonged period, regardless of their disease mutation. Telomeres in TERC-treated lines were longer than in the untreated cultures. This is the first study of its kind in DC lymphocytes and the first to demonstrate that transduction with TERC alone can improve cell survival and telomere length without the need for exogenous TERT.

Research GroupMolecular Biology group
PublisherWileyBlackwell
JournalBritish Journal of Haematology
ISSN1365-2141
Publication dates
PrintMar 2009
Publication process dates
Deposited02 Dec 2009
Output statusPublished
Digital Object Identifier (DOI)https://doi.org/10.1111/j.1365-2141.2008.07516.x
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/81z2y

  • 26
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Efficient generation of transgenic mice by lentivirus-mediated modification of spermatozoa
Chandrashekran, A., Sarkar, R., Thrasher, A., Fraser, S., Dibb, N., Casimir, C., Winston, R. and Readhead, C. 2014. Efficient generation of transgenic mice by lentivirus-mediated modification of spermatozoa. The FASEB Journal. 28 (2), pp. 569-576. https://doi.org/10.1096/fj.13-233999
Lentiviral vector transduction of spermatozoa as a tool for the study of early development
Chandrashekran, A., Isa, I., Dudhia, J., Thrasher, A., Dibb, N., Casimir, C., Readhead, C. and Winston, R. 2014. Lentiviral vector transduction of spermatozoa as a tool for the study of early development. FEBS Open Bio. 4 (1), pp. 266-275. https://doi.org/10.1016/j.fob.2014.02.008
Targeted gene delivery using lentiviruses displaying surface ligands
Casimir, C. 2013. Targeted gene delivery using lentiviruses displaying surface ligands. The Journal of Gene Medicine.
Lentiviral transduction of spermatozoa (VITSPER): a simple method for the generation of transgenic mice
Casimir, C. 2013. Lentiviral transduction of spermatozoa (VITSPER): a simple method for the generation of transgenic mice. Nature Biotechnology.
Dyskeratosis congenita and the DNA damage response
Kirwan, M., Beswick, R., Walne, A., Hossain, U., Casimir, C., Vulliamy, T. and Dokal, I. 2011. Dyskeratosis congenita and the DNA damage response. British Journal of Haematology. 153 (5), pp. 634-643. https://doi.org/10.1111/j.1365-2141.2011.08679.x
Structure and expression of a newt cardio-skeletal myosin gene. Implications for the C value paradox
Casimir, C., Gates, P., Ross-Macdonald, P., Jackson, J., Patient, R. and Brockes, J. 1988. Structure and expression of a newt cardio-skeletal myosin gene. Implications for the C value paradox. Journal of Molecular Biology. 202 (2), pp. 287-296.
Evidence for dedifferentiation and metaplasia in amphibian limb regeneration from inheritance of DNA methylation.
Casimir, C., Gates, P., Patient, R. and Brockes, J. 1988. Evidence for dedifferentiation and metaplasia in amphibian limb regeneration from inheritance of DNA methylation. Development (Cambridge, England). 104 (4), pp. 657-68.
Purification of the 47 kDa phosphoprotein associated with the NADPH oxidase of human neutrophils
Teahan, C., Totty, N., Casimir, C. and Segal, A. 1990. Purification of the 47 kDa phosphoprotein associated with the NADPH oxidase of human neutrophils. The Biochemical Journal. 267 (2), pp. 485-489.
Characterization of the 47-kilodalton autosomal chronic granulomatous disease protein: tissue-specific expression and transcriptional control by retinoic acid
Rodaway, A., Teahan, C., Casimir, C., Segal, A. and Bentley, D. 1990. Characterization of the 47-kilodalton autosomal chronic granulomatous disease protein: tissue-specific expression and transcriptional control by retinoic acid. Molecular and cellular biology. 10 (10), pp. 5388-5396.
The alpha subunit of cytochrome b-245 mapped to chromosome 16
Bu-Ghanim, H., Casimir, C., Povey, S. and Segal, A. 1990. The alpha subunit of cytochrome b-245 mapped to chromosome 16. Genomics. 8 (3), pp. 568-70.
Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat
Casimir, C., Bu-Ghanim, H., Rodaway, A., Bentley, D., Rowe, P. and Segal, A. 1991. Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat. Proceedings of the National Academy of Sciences of the United States of America. 88 (7), pp. 2753-2757.
Isolation of cDNA coding for an ubiquitous membrane protein deficient in high Na+, low K+ stomatocytic erythrocytes
Stewart, G., Hepworth-Jones, B., Keen, J., Dash, B., Argent, A. and Casimir, C. 1992. Isolation of cDNA coding for an ubiquitous membrane protein deficient in high Na+, low K+ stomatocytic erythrocytes. Blood. 79 (6), pp. 1593-1601.
Identification of the defective NADPH-oxidase component in chronic granulomatous disease: a study of 57 European families
Casimir, C., Chetty, M., Bohler, M., Garcia, R., Fischer, A., Griscelli, C., Johnson, B. and Segal, A. 1992. Identification of the defective NADPH-oxidase component in chronic granulomatous disease: a study of 57 European families. European Journal of Clinical Investigation. 22 (6), pp. 403-406. https://doi.org/10.1111/j.1365-2362.1992.tb01481.x
Restoration of superoxide generation to a chronic granulomatous disease-derived B-cell line by retrovirus mediated gene transfer
Thrasher, A., Chetty, M., Casimir, C. and Segal, A. 1992. Restoration of superoxide generation to a chronic granulomatous disease-derived B-cell line by retrovirus mediated gene transfer. Blood. 80 (5), pp. 1125-1129.
Chronic granulomatous disease: towards gene therapy.
Thrasher, A., Segal, A. and Casimir, C. 1993. Chronic granulomatous disease: towards gene therapy. Immunodeficiency. 4 (1-4), pp. 327-33.
Low NADPH oxidase activity in Epstein-Barr-virus-immortalized B-lymphocytes is due to a post-transcriptional block in expression of cytochrome b558
Chetty, M., Thrasher, A., Abo, A. and Casimir, C. 1995. Low NADPH oxidase activity in Epstein-Barr-virus-immortalized B-lymphocytes is due to a post-transcriptional block in expression of cytochrome b558. The Biochemical Journal. 306, pp. 141-145.
Gene transfer to primary chronic granulomatous disease monocytes
Thrasher, A., Casimir, C., Kinnon, C., Morgan, G., Segal, A. and Levinsky, R. 1995. Gene transfer to primary chronic granulomatous disease monocytes. Lancet. 346 (8967), pp. 92-93. https://doi.org/10.1016/S0140-6736(95)92116-8
Functional reconstitution of the NADPH-oxidase by adeno-associated virus gene transfer
Thrasher, A., De Alwis, M., Casimir, C., Kinnon, C., Page, K., Lebkowski, J., Segal, A. and Levinsky, R. 1995. Functional reconstitution of the NADPH-oxidase by adeno-associated virus gene transfer. Blood. 86 (2), pp. 761-5.
Generation of recombinant adeno-associated virus (rAAV) from an adenoviral vector and functional reconstitution of the NADPH-oxidase
Thrasher, A., De Alwis, M., Casimir, C., Kinnon, C., Page, K., Lebkowski, J., Segal, A. and Levinsky, R. 1995. Generation of recombinant adeno-associated virus (rAAV) from an adenoviral vector and functional reconstitution of the NADPH-oxidase. Gene therapy. 2 (7), pp. 481-485.
Molecular analysis in three cases of X91: variant chronic granulomatous disease
Bu-Ghanim, H., Segal, A., Keep, N. and Casimir, C. 1995. Molecular analysis in three cases of X91: variant chronic granulomatous disease. Blood. 86 (9), pp. 3575-3582.
Mapping of human non-muscle type cofilin (CFL1) to chromosome 11q13 and muscle-type cofilin (CFL2) to chromosome 14
Gillett, G., Fox, M., Rowe, P., Casimir, C. and Povey, S. 1996. Mapping of human non-muscle type cofilin (CFL1) to chromosome 11q13 and muscle-type cofilin (CFL2) to chromosome 14. Annals of Human Genetics. 60 (Pt 3), pp. 201-211.
Enhanced retroviral transduction of 5-fluorouracil-resistant human bone marrow (stem) cells using a genetically modified packaging cell line
Povey, J., Weeratunge, N., Marden, C., Sehgal, A., Thrasher, A. and Casimir, C. 1998. Enhanced retroviral transduction of 5-fluorouracil-resistant human bone marrow (stem) cells using a genetically modified packaging cell line. Blood. 92 (11), pp. 4080-4089.
Retroviral transduction of quiescent haematopoietic cells using a packaging cell line expressing the membrane-bound form of stem cell factor
Sehgal, A., Weeratunge, N. and Casimir, C. 1999. Retroviral transduction of quiescent haematopoietic cells using a packaging cell line expressing the membrane-bound form of stem cell factor. Gene therapy. 6 (6), pp. 1084-1091.
Haemophilias: advances towards genetic engineering replacement therapy.
Emilien, G., Maloteaux, J., Penasse, C., Goodeve, A. and Casimir, C. 2000. Haemophilias: advances towards genetic engineering replacement therapy. Clinical and laboratory haematology. 22 (6), pp. 313-23. https://doi.org/10.1046/j.1365-2257.2000.00332.x
Differentiation-dependent up-regulation of p47(phox) gene transcription is associated with changes in PU.1 phosphorylation and increased binding affinity
Marden, C., Stefanidis, D., Cunninghame-Graham, D. and Casimir, C. 2003. Differentiation-dependent up-regulation of p47(phox) gene transcription is associated with changes in PU.1 phosphorylation and increased binding affinity. Biochemical and Biophysical Research Communications. 305 (1), pp. 193-202. https://doi.org/10.1016/S0006-291X(03)00727-7
A functional ISRE is required for myeloid transcription of the p47(phox) gene
Marden, C., Cunninghame-Graham, D., Thrasher, A. and Casimir, C. 2003. A functional ISRE is required for myeloid transcription of the p47(phox) gene. Biochimica et biophysica acta. 1630 (2-3), pp. 117-122. https://doi.org/10.1016/j.bbaexp.2003.09.005
Enhancer-deleted retroviral vectors restore high levels of superoxide generation in a mouse model of CGD.
Schwickerath, O., Brouns, G., Thrasher, A., Kinnon, C., Roes, J. and Casimir, C. 2004. Enhancer-deleted retroviral vectors restore high levels of superoxide generation in a mouse model of CGD. Journal of Gene Medicine. 6 (6), pp. 603-15.
Growth factor displayed on the surface of retroviral particles without manipulation of envelope proteins is biologically active and can enhance transduction.
Chandrashekran, A., Gordon, M., Darling, D., Farzaneh, F. and Casimir, C. 2004. Growth factor displayed on the surface of retroviral particles without manipulation of envelope proteins is biologically active and can enhance transduction. Journal of Gene Medicine. 6 (11), pp. 1189-96.
Targeted retroviral transduction of c-kit+ hematopoietic cells using novel ligand display technology
Chandrashekran, A., Gordon, M. and Casimir, C. 2004. Targeted retroviral transduction of c-kit+ hematopoietic cells using novel ligand display technology. Blood. 104 (9), pp. 2697-2703. https://doi.org/10.1182/blood-2003-10-3717
Circulating haematopoietic progenitors are differentially reduced amongst subtypes of dyskeratosis congenita
Kirwan, M., Vulliamy, T., Beswick, R., Walne, A., Casimir, C. and Dokal, I. 2008. Circulating haematopoietic progenitors are differentially reduced amongst subtypes of dyskeratosis congenita. British Journal of Haematology. 140 (6), pp. 719-22. https://doi.org/10.1111/j.1365-2141.2008.06991.x
Molecular cloning and characterization of grancalcin, a novel EF-hand calcium-binding protein abundant in neutrophils and monocytes
Boyhan, A., Casimir, C., French, J., Teahan, C. and Segal, A. 1992. Molecular cloning and characterization of grancalcin, a novel EF-hand calcium-binding protein abundant in neutrophils and monocytes. The Journal of Biological Chemistry. 267 (5), pp. 2928-2933.
Post-transcriptional regulation of the chicken thymidine kinase gene
Groudine, M. and Casimir, C. 1984. Post-transcriptional regulation of the chicken thymidine kinase gene. Nucleic Acids Research. 12 (3), pp. 1427-46.