A hierarchical system for a distributed representation of the peripersonal space of a humanoid robot

Article


Antonelli, M., Gibaldi, A., Beuth, F., Duran, A., Canessa, A., Chessa, M., Solari, F., Del Pobil, A., Hamker, F., Chinellato, E. and Sabatini, S. 2014. A hierarchical system for a distributed representation of the peripersonal space of a humanoid robot. IEEE Transactions on Autonomous Mental Development. 6 (4), pp. 259-273. https://doi.org/10.1109/TAMD.2014.2332875
TypeArticle
TitleA hierarchical system for a distributed representation of the peripersonal space of a humanoid robot
AuthorsAntonelli, M., Gibaldi, A., Beuth, F., Duran, A., Canessa, A., Chessa, M., Solari, F., Del Pobil, A., Hamker, F., Chinellato, E. and Sabatini, S.
Abstract

Reaching a target object in an unknown and unstructured environment is easily performed by human beings. However, designing a humanoid robot that executes the same task requires the implementation of complex abilities, such as identifying the target in the visual field, estimating its spatial location, and precisely driving the motors of the arm to reach it. While research usually tackles the development of such abilities singularly, in this work we integrate a number of computational models into a unified framework, and demonstrate in a humanoid torso the feasibility of an integrated working representation of its peripersonal space. To achieve this goal, we propose a cognitive architecture that connects several models inspired by neural circuits of the visual, frontal and posterior parietal cortices of the brain. The outcome of the integration process is a system that allows the robot to create its internal model and its representation of the surrounding space by interacting with the environment directly, through a mutual adaptation of perception and action. The robot is eventually capable of executing a set of tasks, such as recognizing, gazing and reaching target objects, which can work separately or cooperate for supporting more structured and effective behaviors.

LanguageEnglish
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
JournalIEEE Transactions on Autonomous Mental Development
ISSN1943-0604
Electronic1943-0612
Publication dates
Online26 Jun 2014
Print09 Dec 2014
Publication process dates
Deposited10 May 2016
Accepted13 May 2014
Output statusPublished
Accepted author manuscript
Copyright Statement

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Additional information

Date of publication June 26, 2014

Digital Object Identifier (DOI)https://doi.org/10.1109/TAMD.2014.2332875
Permalink -

https://repository.mdx.ac.uk/item/86621

Download files


Accepted author manuscript
  • 20
    total views
  • 4
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Affective visuomotor interaction: a functional model for socially competent robot grasping
Chinellato, E., Ferretti, G. and Irving, L. 2019. Affective visuomotor interaction: a functional model for socially competent robot grasping. Martinez-Hernandez, U., Vouloutsi, V., Mura, A., Mangan, M., Minoru, A., Prescott, T. and Verschure, P. (ed.) 8th International Conference, Living Machines 2019. Nara, Japan 09 - 12 Jul 2019 Springer, Cham. pp. 51-62 https://doi.org/10.1007/978-3-030-24741-6_5
The competitive and multi-faceted nature of neural coding in motor imagery: Comment on "Muscleless motor synergies and actions without movements: From motor neuroscience to cognitive robotics" by V. Mohan et al.
Chinellato, E. 2019. The competitive and multi-faceted nature of neural coding in motor imagery: Comment on "Muscleless motor synergies and actions without movements: From motor neuroscience to cognitive robotics" by V. Mohan et al. Physics of life reviews. https://doi.org/10.1016/j.plrev.2019.02.003
Sensorial computing
Varsani, P., Moseley, R., Jones, S., James-Reynolds, C., Chinellato, E. and Augusto, J. 2018. Sensorial computing. in: Filimowicz, M. and Tzankova, V. (ed.) New Directions in Third Wave Human-Computer Interaction: Volume 1 - Technologies Springer. pp. 265-284
Advances in human-computer interactions: methods, algorithms, and applications
Solari, F., Chessa, M., Chinellato, E. and Bresciani, J. 2018. Advances in human-computer interactions: methods, algorithms, and applications. Computational Intelligence and Neuroscience. 2018. https://doi.org/10.1155/2018/4127475
The STRANDS project: long-term autonomy in everyday environments
Hawes, N., Burbridge, C., Jovan, F., Kunze, L., Lacerda, B., Mudrova, L., Young, J., Wyatt, J., Hebesberger, D., Kortner, T., Ambrus, R., Bore, N., Folkesson, J., Jensfelt, P., Beyer, L., Hermans, A., Leibe, B., Aldoma, A., Faulhammer, T., Zillich, M., Vincze, M., Chinellato, E., Al-Omari, M., Duckworth, P., Gatsoulis, Y., Hogg, D., Cohn, A., Dondrup, C., Pulido Fentanes, J., Krajnik, T., Santos, J., Duckett, T. and Hanheide, M. 2017. The STRANDS project: long-term autonomy in everyday environments. IEEE Robotics & Automation Magazine. 24 (3), pp. 146-156. https://doi.org/10.1109/MRA.2016.2636359
Decoding information for grasping from the macaque dorsomedial visual stream
Filippini, M., Breveglieri, R., Akhras, M., Bosco, A., Chinellato, E. and Fattori, P. 2017. Decoding information for grasping from the macaque dorsomedial visual stream. The Journal of Neuroscience. 37 (16), pp. 4311-4322. https://doi.org/10.1523/JNEUROSCI.3077-16.2017
An incremental von mises mixture framework for modelling human activity streaming data
Chinellato, E., Mardia, K., Hogg, D. and Cohn, A. 2017. An incremental von mises mixture framework for modelling human activity streaming data. International Work-Conference on Time Series Analysis (ITISE 2017). Granada, Spain 18 - 20 Sep 2017 pp. 379-389
Feature space analysis for human activity recognition in smart environments
Chinellato, E., Hogg, D. and Cohn, A. 2016. Feature space analysis for human activity recognition in smart environments. 12th International Conference on Intelligent Environments (IE). London, United Kingdom 14 - 16 Sep 2016 Institute of Electrical and Electronics Engineers (IEEE). pp. 194-197 https://doi.org/10.1109/IE.2016.43
Adaptive saccade controller inspired by the primates' cerebellum
Antonelli, M., Duran, A., Chinellato, E. and Del Pobil, A. 2015. Adaptive saccade controller inspired by the primates' cerebellum. IEEE International Conference on Robotics and Automation (ICRA). Seattle, Washington, USA 26 - 30 May 2015 Institute of Electrical and Electronics Engineers (IEEE). pp. 5048-5053 https://doi.org/10.1109/ICRA.2015.7139901
Learning the visual–oculomotor transformation: effects on saccade control and space representation
Antonelli, M., Duran, A., Chinellato, E. and Del Pobil, A. 2015. Learning the visual–oculomotor transformation: effects on saccade control and space representation. Robotics and Autonomous Systems. 71, pp. 13-22. https://doi.org/10.1016/j.robot.2014.11.018
Motor interference in interactive contexts
Chinellato, E., Castiello, U. and Sartori, L. 2015. Motor interference in interactive contexts. Frontiers in Psychology. 6. https://doi.org/10.3389/fpsyg.2015.00791
The multiform motor cortical output: kinematic, predictive and response coding
Sartori, L., Betti, S., Chinellato, E. and Castiello, U. 2015. The multiform motor cortical output: kinematic, predictive and response coding. Cortex. 70, pp. 169-178. https://doi.org/10.1016/j.cortex.2015.01.019
The visual neuroscience of robotic grasping: achieving sensorimotor skills through dorsal-ventral stream integration
Chinellato, E. and Del Pobil, A. 2016. The visual neuroscience of robotic grasping: achieving sensorimotor skills through dorsal-ventral stream integration. Springer.
Unsupervised grounding of textual descriptions of object features and actions in video
Alomari, M., Chinellato, E., Gatsoulis, Y., Hogg, D. and Cohn, A. 2016. Unsupervised grounding of textual descriptions of object features and actions in video. 15th International Conference Principles of Knowledge Representation and Reasoning (KR 2016). Cape Town, South Africa 25 - 29 Apr 2016 Association for the Advancement of Artificial Intelligence (AAAI). pp. 505-508