Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing

Article


Jones, A. 2015. Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing. Frontiers in Integrative Neuroscience. 8, pp. 1-9. https://doi.org/10.3389/fnint.2014.00096
TypeArticle
TitleIndependent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing
AuthorsJones, A.
Abstract

Selective attention to a spatial location has shown enhanced perception and facilitate behavior for events at attended locations. However, selection relies not only on where but also when an event occurs. Recently, interest has turned to how intrinsic neural oscillations in the brain entrain to rhythms in our environment, and, stimuli appearing in or out of sync with a rhythm have shown to modulate perception and performance. Temporal expectations created by rhythms and spatial attention are two processes which have independently shown to affect stimulus processing but it remains largely unknown how, and if, they interact. In four separate tasks, this study investigated the effects of voluntary spatial attention and bottom-up temporal expectations created by rhythms in both unimodal and crossmodal conditions. In each task the participant used an informative cue, either color or pitch, to direct their covert spatial attention to the left or right, and respond as quickly as possible to a target. The lateralized target (visual or auditory) was then presented at the attended or unattended side. Importantly, although not task relevant, the cue was a rhythm of either flashes or beeps. The target was presented in or out of sync (early or late) with the rhythmic cue. Results showed participants were faster responding to spatially attended compared to unattended targets in all tasks. Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions. Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks. That is, rhythmic stimuli in one modality influenced the temporal expectancy in the other modality, suggesting temporal expectancies created by rhythms are crossmodal. Interestingly, there was no interaction between top-down spatial attention and rhythmic cueing in any task suggesting these two processes largely influenced behavior independently.

Keywordsentrainment; crossmodal; endogenous; exogenous; attention; expectancy; hazard function
PublisherFrontiers Media
JournalFrontiers in Integrative Neuroscience
ISSN
Electronic1662-5145
Publication dates
Online06 Jan 2015
Print06 Jan 2015
Publication process dates
Deposited15 May 2015
Accepted05 Dec 2014
Output statusPublished
Publisher's version
License
Copyright Statement

Copyright © 2015 Jones. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Digital Object Identifier (DOI)https://doi.org/10.3389/fnint.2014.00096
Web of Science identifierWOS:000363800700001
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/8552z

  • 53
    total views
  • 10
    total downloads
  • 8
    views this month
  • 2
    downloads this month

Export as

Related outputs

Do words compete as we speak? A systematic review of picture-word interference (PWI) studies investigating the nature of lexical selection
Korko.M., Bose, A., Jones, A., Coulson, M and De Mornay Davies, P. 2024. Do words compete as we speak? A systematic review of picture-word interference (PWI) studies investigating the nature of lexical selection. Psychology of Language and Communication. 28 (1), pp. 261-322. https://doi.org/10.58734/plc-2024-0011
Rhythmic temporal cues coordinate cross-frequency phase-amplitude coupling during memory encoding
Townsend, P., Jones, A., Patel, A. and Race, E. 2024. Rhythmic temporal cues coordinate cross-frequency phase-amplitude coupling during memory encoding. Journal of Cognitive Neuroscience. 36 (10), pp. 2100-2116. https://doi.org/10.1162/jocn_a_02217
Spatial attention is not affected by alpha or beta transcranial alternating current stimulation: A registered report
Silas, J., Jones, A., Yarrow, K. and Anderson, W. 2023. Spatial attention is not affected by alpha or beta transcranial alternating current stimulation: A registered report. Cortex. 164, pp. 33-50. https://doi.org/10.1016/j.cortex.2023.03.011
The many facets of inhibitory control and their role in syntactic selection
Korko, M., Coulson, M., Jones, A. and De Mornay Davies, P. 2023. The many facets of inhibitory control and their role in syntactic selection. Language and Cognition. pp. 1-27. https://doi.org/10.1017/langcog.2023.44
Bridging neuroscience and robotics: spiking neural networks in action
Jones, A., Gandhi, V., Mahiddine, A. and Huyck, C. 2023. Bridging neuroscience and robotics: spiking neural networks in action. Sensors. 23 (21), pp. 1-14. https://doi.org/10.3390/s23218880
Null effects of temporal prediction on recognition memory but evidence for differential neural activity at encoding. A registered report
Jones, A., Silas, J., Anderson, W. and Ward, E. 2023. Null effects of temporal prediction on recognition memory but evidence for differential neural activity at encoding. A registered report. Cortex. 169, pp. 130-145. https://doi.org/10.1016/j.cortex.2023.09.006
Temporal expectation improves recognition memory for spatially attended objects
Jones, A., Ward, E., Csiszer, E. and Szymczak, J. 2022. Temporal expectation improves recognition memory for spatially attended objects. Journal of Cognitive Neuroscience. 34 (9), pp. 1616-1629. https://doi.org/10.1162/jocn_a_01872
The seductive allure of technical language and its effect on covid-19 vaccine beliefs and intentions
Silas, J., Jones, A., Ayton, P. and Weiss-Cohen, L. 2021. The seductive allure of technical language and its effect on covid-19 vaccine beliefs and intentions. Vaccine. 39 (52), pp. 7590-7597. https://doi.org/10.1016/j.vaccine.2021.11.027
Types of interference and their resolution in monolingual word production
Korko, M., Coulson, M., Jones, A. and De Mornay Davies, P. 2021. Types of interference and their resolution in monolingual word production. Acta Psychologica. 214, pp. 1-15. https://doi.org/10.1016/j.actpsy.2021.103251
Exploring the multidimensional assessment of interoceptive awareness in youth aged 7–17 years
Jones, A., Silas, J., Todd, J., Stewart, A., Acree, M., Coulson, M. and Mehling, W. 2021. Exploring the multidimensional assessment of interoceptive awareness in youth aged 7–17 years. Journal of Clinical Psychology. 77 (3), pp. 661-682. https://doi.org/10.1002/jclp.23067
Event-related alpha desynchronization in touch - comparing attention and perception
Silas, J., Tipple, A. and Jones, A. 2019. Event-related alpha desynchronization in touch - comparing attention and perception. Neuroscience Letters. 705, pp. 131-137. https://doi.org/10.1016/j.neulet.2019.04.058
Rhythmic temporal structure at encoding enhances recognition memory
Jones, A. and Ward, E. 2019. Rhythmic temporal structure at encoding enhances recognition memory. Journal of Cognitive Neuroscience. 31 (10), pp. 1549-1562. https://doi.org/10.1162/jocn_a_01431
Temporal expectancies and rhythmic cueing in touch: the influence of spatial attention
Jones, A. 2019. Temporal expectancies and rhythmic cueing in touch: the influence of spatial attention. Cognition. 182, pp. 140-150. https://doi.org/10.1016/j.cognition.2018.09.011
The multidimensional assessment of interoceptive awareness, version 2 (MAIA-2)
Mehling, W., Acree, M., Stewart, A., Silas, J. and Jones, A. 2018. The multidimensional assessment of interoceptive awareness, version 2 (MAIA-2). PLoS ONE. 13 (12), pp. 1-12. https://doi.org/10.1371/journal.pone.0208034
Electrophysiological evidence for changes in attentional orienting and selection in functional somatic symptoms
Karlinski, M., Jones, A. and Forster, B. 2019. Electrophysiological evidence for changes in attentional orienting and selection in functional somatic symptoms. Clinical Neurophysiology. 130 (1), pp. 85-92. https://doi.org/10.1016/j.clinph.2018.09.027
Neuron-based control mechanisms for a robotic arm and hand
Singh, N., Huyck, C., Gandhi, V. and Jones, A. 2017. Neuron-based control mechanisms for a robotic arm and hand. International Journal of Computer, Electrical, Automation, Control and Information Engineering. 11 (2), pp. 221-229. https://doi.org/10.5281/zenodo.1128871
Temporal expectancies driven by self- and externally generated rhythms
Jones, A., Hsu, Y., Granjon, L. and Waszak, F. 2017. Temporal expectancies driven by self- and externally generated rhythms. NeuroImage. 156, pp. 352-362. https://doi.org/10.1016/j.neuroimage.2017.05.042
Motor-evoked potentials reveal a motor-cortical readout of evidence accumulation for sensorimotor decisions
Yarrow, K., Hadar, A., Rowe, P., Di Costa, S. and Jones, A. 2015. Motor-evoked potentials reveal a motor-cortical readout of evidence accumulation for sensorimotor decisions. VSS 2015: Vision Sciences Society 15th Annual Meeting. Florida, USA 15 - 20 May 2015 pp. 49
Motor‐evoked potentials reveal a motor‐cortical readout of evidence accumulation for sensorimotor decisions
Hadar, A., Rowe, P., Di Costa, S., Jones, A. and Yarrow, K. 2016. Motor‐evoked potentials reveal a motor‐cortical readout of evidence accumulation for sensorimotor decisions. Psychophysiology. 53 (11), pp. 1721-1731. https://doi.org/10.1111/psyp.12737
The attentive homunculus: ERP evidence for somatotopic allocation of attention in tactile search
Forster, B., Tziraki, M. and Jones, A. 2016. The attentive homunculus: ERP evidence for somatotopic allocation of attention in tactile search. Neuropsychologia. 84, pp. 158-166. https://doi.org/10.1016/j.neuropsychologia.2016.02.009
Body in mind
Jones, A. and Forster, B. 2015. Body in mind. Frontiers in Psychology. 6. https://doi.org/10.3389/fpsyg.2015.00056
Neural correlates of endogenous attention, exogenous attention and inhibition of return in touch
Jones, A. and Forster, B. 2014. Neural correlates of endogenous attention, exogenous attention and inhibition of return in touch. European Journal of Neuroscience. 40 (2), pp. 2389-2398. https://doi.org/10.1111/ejn.12583
The interaction between attention and motor prediction. An ERP study
Jones, A., Hughes, G. and Waszak, F. 2013. The interaction between attention and motor prediction. An ERP study. NeuroImage. 83, pp. 533-541. https://doi.org/10.1016/j.neuroimage.2013.07.004
Neural correlates of automatic attention in touch: event related potentials and behavioural measures
Jones, A. and Forster, B. 2010. Neural correlates of automatic attention in touch: event related potentials and behavioural measures. Psychophysiology. 47 (S1), p. S53. https://doi.org/10.1111/j.1469-8986.2010.01111.x
The interaction between attention and action expectation. An ERP study
Jones, A., Hughes, G. and Waszak, F. 2013. The interaction between attention and action expectation. An ERP study. Journal of Cognitive Neuroscience. S, pp. 115-115.
Independent effects of endogenous and exogenous attention in touch
Jones, A. and Forster, B. 2013. Independent effects of endogenous and exogenous attention in touch. Somatosensory and Motor Research. https://doi.org/10.3109/08990220.2013.779243
Lost in vision: ERP correlates of exogenous tactile attention when engaging in a visual task
Jones, A. and Forster, B. 2013. Lost in vision: ERP correlates of exogenous tactile attention when engaging in a visual task. Neuropsychologia. 51 (4), pp. 675-685. https://doi.org/10.1016/j.neuropsychologia.2013.01.010
Reflexive attention in touch: an investigation of event related potentials and behavioural responses
Jones, A. and Forster, B. 2012. Reflexive attention in touch: an investigation of event related potentials and behavioural responses. Biological Psychology. 89 (2), pp. 313-322. https://doi.org/10.1016/j.biopsycho.2011.11.004