On the depth of modular invariant rings for the groups C_p x C_p

Book chapter


Elmer, J. and Fleischmann, P. 2009. On the depth of modular invariant rings for the groups C_p x C_p. in: Symmetry and Spaces: in honour of Gerry Schwarz Birkhauser Boston.
Chapter titleOn the depth of modular invariant rings for the groups C_p x C_p
AuthorsElmer, J. and Fleischmann, P.
Abstract

Let G be a finite group, k a field of characteristic p and V a finite dimensional kG-module. Let R denote the symmetric algebra over the dual space V∗ with G acting by graded algebra automorphisms. Then it is known that the depth of the invariant ring R^G is at least min {dim(V), dim(V^P)+cc_G(R)+1}. A module V for which the depth of R^G attains this lower bound was called flat by Fleischmann, Kemper and Shank [13]. In this paper some of the ideas in [13] are further developed and applied to certain representations of C_p × C_p, generating many new examples of flat modules. We introduce the useful notion of “strongly flat” modules, classi-fying them for the group C_2 × C_2, as well as determining the depth of R^G for any indecomposable modular representation of C_2 × C_2.

Book titleSymmetry and Spaces: in honour of Gerry Schwarz
PublisherBirkhauser Boston
SeriesProgress in Mathematics
ISBN
Hardcover9780817648749
Publication dates
Print14 Nov 2009
Publication process dates
Deposited14 Apr 2016
Output statusPublished
Copyright Statement

Access to full text restricted pending copyright check

Digital Object Identifier (DOI)https://doi.org/10.1007/978-0-8176-4875-6_4
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/863v3

Restricted files

Accepted author manuscript

  • 41
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

The separating variety for 2 x 2 matrix invariants
Elmer, J. 2024. The separating variety for 2 x 2 matrix invariants. Linear and Multilinear Algebra. 72 (3), pp. 389-411. https://doi.org/10.1080/03081087.2022.2158300
The separating variety for matrix semi-invariants
Elmer, J. 2023. The separating variety for matrix semi-invariants. Linear Algebra and its Applications. 674, pp. 466-492. https://doi.org/10.1016/j.laa.2023.06.012
Modular covariants of cyclic groups of order p
Elmer, J. 2022. Modular covariants of cyclic groups of order p. Journal of Algebra. 598, pp. 134-155. https://doi.org/10.1016/j.jalgebra.2022.01.015
The relative Heller operator and relative cohomology for the Klein 4-group
Elmer, J. 2022. The relative Heller operator and relative cohomology for the Klein 4-group. Communications in Algebra. 50 (4), pp. 1518-1534. https://doi.org/10.1080/00927872.2021.1984496
Degree bounds for modular covariants
Elmer, J. and Sezer, M. 2020. Degree bounds for modular covariants. Forum Mathematicum. 32 (4), pp. 905-910. https://doi.org/10.1515/forum-2019-0196
Locally finite derivations and modular coinvariants
Elmer, J. and Sezer, M. 2018. Locally finite derivations and modular coinvariants. Quarterly Journal of Mathematics. 69 (3), pp. 1053-1062. https://doi.org/10.1093/qmath/hay013
Symmetric powers and modular invariants of elementary abelian p-groups
Elmer, J. 2017. Symmetric powers and modular invariants of elementary abelian p-groups. Journal of Algebra. 492, pp. 157-184. https://doi.org/10.1016/j.jalgebra.2017.07.020
On separating a fixed point from zero by invariants
Elmer, J. and Kohls, M. 2017. On separating a fixed point from zero by invariants. Communications in Algebra. 45 (1), pp. 371-375. https://doi.org/10.1080/00927872.2016.1175465
Zero-separating invariants for finite groups
Elmer, J. and Kohls, M. 2014. Zero-separating invariants for finite groups. Journal of Algebra. 411, pp. 92-113. https://doi.org/10.1016/j.jalgebra.2014.03.044
Separating invariants for arbitrary linear actions of the additive group
Dufresne, E., Elmer, J. and Sezer, M. 2014. Separating invariants for arbitrary linear actions of the additive group. Manuscripta Mathematica. 143 (1), pp. 207-219. https://doi.org/10.1007/s00229-013-0625-y
Separating Invariants for the Basic G_a actions
Elmer, J. and Kohls, M. 2012. Separating Invariants for the Basic G_a actions. Proceedings of the American Mathematical Society. 140 (1), pp. 135-146.
On the depth of separating invariants for finite groups
Elmer, J. 2012. On the depth of separating invariants for finite groups. Beitrage zur Algebra und Geometrie. 53 (1), pp. 31-39.
The Cohen-Macaulay property of separating invariants of finite groups
Dufresne, E., Elmer, J. and Kohls, M. 2009. The Cohen-Macaulay property of separating invariants of finite groups. Transformation Groups. 14 (4), pp. 771-785.
Depth and detection in modular invariant theory
Elmer, J. 2009. Depth and detection in modular invariant theory. Journal of Algebra. 322 (5), pp. 1653-1666. https://doi.org/10.1016/j.jalgebra.2009.04.036
Associated primes for cohomology modules
Elmer, J. 2008. Associated primes for cohomology modules. Archiv der Mathematik. 91 (6), pp. 481-485. https://doi.org/10.1007/s00013-008-2902-7
Zero-separating invariants for linear algebraic groups
Elmer, J. and Kohls, M. 2016. Zero-separating invariants for linear algebraic groups. Proceedings of the Edinburgh Mathematical Society. 59 (4), pp. 911-924. https://doi.org/10.1017/S0013091515000322