Dr Jonathan Elmer


Dr Jonathan Elmer
NameDr Jonathan Elmer
Job titleSenior Lecturer in Mathematics
Research institute
Primary appointmentDesign Engineering & Mathematics
Email addressj.elmer@mdx.ac.uk
ORCIDhttps://orcid.org/0000-0001-5296-1987
Contact categoryResearcher

Biography

Biography

I joined Middlesex as a lecturer in Mathematics in 2016. Previously I held teaching positions at the University of Aberdeen (2012-2015) and University of Bristol (2010-2012). Before that I held research posts at RWTH Aachen (2008-2009) and the University of Aberdeen (2007-2008). 

Teaching

I am module leader for the following courses:

MSO0201 Foundation Mathematics (Psych)

MSO0204 Foundation Mathematics (Law)

MSO1125 Mathematical Thinking

MSO2115 Abstract Algebra

MSO3115 Rings and Fields

MSO3450 Cryptography and Blockchain

I am supervising one PhD student: Kazal Kadr, who began her studies in October 2019.

Employment

Education and qualifications

PhD

Thesis title "Symmetric algebras and the depth of modular invariant rings"

Supervised by Prof. Peter Fleischmann

23 Nov 2007
University of Kent
MMath Mathematics
01 May 2003
University of Cambridge

Grants

Separating Invariants for Quivers

Award of £29,461. To be used to pay 20% salary for 12 months, Jan 2022-Jan2023, plus travel expenses.

15 Jun 2021
EP/W001624/1
EPSRC

Prizes and Awards

Research outputs

The separating variety for matrix semi-invariants

Elmer, J. 2023. The separating variety for matrix semi-invariants. Linear Algebra and its Applications. 674, pp. 466-492. https://doi.org/10.1016/j.laa.2023.06.012

The separating variety for 2 x 2 matrix invariants

Elmer, J. 2024. The separating variety for 2 x 2 matrix invariants. Linear and Multilinear Algebra. 72 (3), pp. 389-411. https://doi.org/10.1080/03081087.2022.2158300

Modular covariants of cyclic groups of order p

Elmer, J. 2022. Modular covariants of cyclic groups of order p. Journal of Algebra. 598, pp. 134-155. https://doi.org/10.1016/j.jalgebra.2022.01.015

The relative Heller operator and relative cohomology for the Klein 4-group

Elmer, J. 2022. The relative Heller operator and relative cohomology for the Klein 4-group. Communications in Algebra. 50 (4), pp. 1518-1534. https://doi.org/10.1080/00927872.2021.1984496

Degree bounds for modular covariants

Elmer, J. and Sezer, M. 2020. Degree bounds for modular covariants. Forum Mathematicum. 32 (4), pp. 905-910. https://doi.org/10.1515/forum-2019-0196

Locally finite derivations and modular coinvariants

Elmer, J. and Sezer, M. 2018. Locally finite derivations and modular coinvariants. Quarterly Journal of Mathematics. 69 (3), pp. 1053-1062. https://doi.org/10.1093/qmath/hay013

Symmetric powers and modular invariants of elementary abelian p-groups

Elmer, J. 2017. Symmetric powers and modular invariants of elementary abelian p-groups. Journal of Algebra. 492, pp. 157-184. https://doi.org/10.1016/j.jalgebra.2017.07.020

On separating a fixed point from zero by invariants

Elmer, J. and Kohls, M. 2017. On separating a fixed point from zero by invariants. Communications in Algebra. 45 (1), pp. 371-375. https://doi.org/10.1080/00927872.2016.1175465

Zero-separating invariants for linear algebraic groups

Elmer, J. and Kohls, M. 2016. Zero-separating invariants for linear algebraic groups. Proceedings of the Edinburgh Mathematical Society. 59 (4), pp. 911-924. https://doi.org/10.1017/S0013091515000322

Zero-separating invariants for finite groups

Elmer, J. and Kohls, M. 2014. Zero-separating invariants for finite groups. Journal of Algebra. 411, pp. 92-113. https://doi.org/10.1016/j.jalgebra.2014.03.044

Separating invariants for arbitrary linear actions of the additive group

Dufresne, E., Elmer, J. and Sezer, M. 2014. Separating invariants for arbitrary linear actions of the additive group. Manuscripta Mathematica. 143 (1), pp. 207-219. https://doi.org/10.1007/s00229-013-0625-y

On the depth of separating invariants for finite groups

Elmer, J. 2012. On the depth of separating invariants for finite groups. Beitrage zur Algebra und Geometrie. 53 (1), pp. 31-39.

Separating Invariants for the Basic G_a actions

Elmer, J. and Kohls, M. 2012. Separating Invariants for the Basic G_a actions. Proceedings of the American Mathematical Society. 140 (1), pp. 135-146.

The Cohen-Macaulay property of separating invariants of finite groups

Dufresne, E., Elmer, J. and Kohls, M. 2009. The Cohen-Macaulay property of separating invariants of finite groups. Transformation Groups. 14 (4), pp. 771-785.

On the depth of modular invariant rings for the groups C_p x C_p

Elmer, J. and Fleischmann, P. 2009. On the depth of modular invariant rings for the groups C_p x C_p. in: Symmetry and Spaces: in honour of Gerry Schwarz Birkhauser Boston.

Depth and detection in modular invariant theory

Elmer, J. 2009. Depth and detection in modular invariant theory. Journal of Algebra. 322 (5), pp. 1653-1666. https://doi.org/10.1016/j.jalgebra.2009.04.036

Associated primes for cohomology modules

Elmer, J. 2008. Associated primes for cohomology modules. Archiv der Mathematik. 91 (6), pp. 481-485. https://doi.org/10.1007/s00013-008-2902-7
  • 746
    total views of outputs
  • 114
    total downloads of outputs
  • 111
    views of outputs this month
  • 6
    downloads of outputs this month