# Zero-separating invariants for linear algebraic groups

Article

Elmer, J. and Kohls, M. 2016. Zero-separating invariants for linear algebraic groups.

*Proceedings of the Edinburgh Mathematical Society.*59 (4), pp. 911-924. https://doi.org/10.1017/S0013091515000322

Type | Article |
---|---|

Title | Zero-separating invariants for linear algebraic groups |

Authors | Elmer, J. and Kohls, M. |

Abstract | Let G be linear algebraic group over an algebraically closed field k acting rationally on a G-module V , and N(G,V) its nullcone. Let δ(G, V ) and σ(G, V ) denote the minimal number d, such that for any v ∈ V^G \ N(G,V) and v ∈ V \ N(G,V) respectively, there exists a homogeneous invariant f of positive degree at most d such that f (v) = 0. Then δ(G) and σ(G) denote the supremum of these numbers taken over all G-modules V . For positive characteristics, we show that δ(G) = ∞ for any subgroup G of GL 2 (k) which contains an infinite unipotent group, and σ(G) is finite if and only if G is finite. In characteristic zero, δ(G) = 1 for any group G, and we show that if σ(G) is finite, then G 0 is unipotent. Our results also lead to a more elementary proof that β_sep(G) is finite if and only if G is finite. |

Language | English |

Publisher | Cambridge University Press |

Journal | Proceedings of the Edinburgh Mathematical Society |

ISSN | 0013-0915 |

Publication dates | |

Online | 22 Dec 2015 |

Print | 01 Nov 2016 |

Publication process dates | |

Deposited | 04 Nov 2016 |

Accepted | 22 Sep 2014 |

Output status | Published |

Copyright Statement | This article has been published in a revised form in Proceedings of the Edinburgh Mathematical Society http://dx.doi.org/10.1017/S0013091515000322. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Edinburgh Mathematical Society 2016 |

Additional information | Published online: 22 December 2015 |

Digital Object Identifier (DOI) | https://doi.org/10.1017/S0013091515000322 |

First submitted version |

https://repository.mdx.ac.uk/item/86v4x

## Download files

##### 18

total views##### 1

total downloads##### 1

views this month##### 0

downloads this month

## Export as

## Related outputs

##### The separating variety for 2 x 2 matrix invariants

Elmer, J. 2024. The separating variety for 2 x 2 matrix invariants.*Linear and Multilinear Algebra.*72 (3), pp. 389-411. https://doi.org/10.1080/03081087.2022.2158300

##### The separating variety for matrix semi-invariants

Elmer, J. 2023. The separating variety for matrix semi-invariants.*Linear Algebra and its Applications.*674, pp. 466-492. https://doi.org/10.1016/j.laa.2023.06.012

##### Modular covariants of cyclic groups of order p

Elmer, J. 2022. Modular covariants of cyclic groups of order p.*Journal of Algebra.*598, pp. 134-155. https://doi.org/10.1016/j.jalgebra.2022.01.015

##### The relative Heller operator and relative cohomology for the Klein 4-group

Elmer, J. 2022. The relative Heller operator and relative cohomology for the Klein 4-group.*Communications in Algebra.*50 (4), pp. 1518-1534. https://doi.org/10.1080/00927872.2021.1984496

##### Degree bounds for modular covariants

Elmer, J. and Sezer, M. 2020. Degree bounds for modular covariants.*Forum Mathematicum.*32 (4), pp. 905-910. https://doi.org/10.1515/forum-2019-0196

##### Locally finite derivations and modular coinvariants

Elmer, J. and Sezer, M. 2018. Locally finite derivations and modular coinvariants.*Quarterly Journal of Mathematics.*69 (3), pp. 1053-1062. https://doi.org/10.1093/qmath/hay013

##### Symmetric powers and modular invariants of elementary abelian p-groups

Elmer, J. 2017. Symmetric powers and modular invariants of elementary abelian p-groups.*Journal of Algebra.*492, pp. 157-184. https://doi.org/10.1016/j.jalgebra.2017.07.020

##### On separating a fixed point from zero by invariants

Elmer, J. and Kohls, M. 2017. On separating a fixed point from zero by invariants.*Communications in Algebra.*45 (1), pp. 371-375. https://doi.org/10.1080/00927872.2016.1175465

##### Zero-separating invariants for finite groups

Elmer, J. and Kohls, M. 2014. Zero-separating invariants for finite groups.*Journal of Algebra.*411, pp. 92-113. https://doi.org/10.1016/j.jalgebra.2014.03.044

##### Separating invariants for arbitrary linear actions of the additive group

Dufresne, E., Elmer, J. and Sezer, M. 2014. Separating invariants for arbitrary linear actions of the additive group.*Manuscripta Mathematica.*143 (1), pp. 207-219. https://doi.org/10.1007/s00229-013-0625-y

##### Separating Invariants for the Basic G_a actions

Elmer, J. and Kohls, M. 2012. Separating Invariants for the Basic G_a actions.*Proceedings of the American Mathematical Society.*140 (1), pp. 135-146.

##### On the depth of separating invariants for finite groups

Elmer, J. 2012. On the depth of separating invariants for finite groups.*Beitrage zur Algebra und Geometrie.*53 (1), pp. 31-39.

##### The Cohen-Macaulay property of separating invariants of finite groups

Dufresne, E., Elmer, J. and Kohls, M. 2009. The Cohen-Macaulay property of separating invariants of finite groups.*Transformation Groups.*14 (4), pp. 771-785.

##### Depth and detection in modular invariant theory

Elmer, J. 2009. Depth and detection in modular invariant theory.*Journal of Algebra.*322 (5), pp. 1653-1666. https://doi.org/10.1016/j.jalgebra.2009.04.036

##### On the depth of modular invariant rings for the groups C_p x C_p

Elmer, J. and Fleischmann, P. 2009. On the depth of modular invariant rings for the groups C_p x C_p. in: Symmetry and Spaces: in honour of Gerry Schwarz Birkhauser Boston.##### Associated primes for cohomology modules

Elmer, J. 2008. Associated primes for cohomology modules.*Archiv der Mathematik.*91 (6), pp. 481-485. https://doi.org/10.1007/s00013-008-2902-7