# The separating variety for matrix semi-invariants

Article

Elmer, J. 2023. The separating variety for matrix semi-invariants.

*Linear Algebra and its Applications.*674, pp. 466-492. https://doi.org/10.1016/j.laa.2023.06.012

Type | Article |
---|---|

Title | The separating variety for matrix semi-invariants |

Authors | Elmer, J. |

Abstract | Let G be a linear algebraic group acting linearly on a vector space (or more generally, an affine variety) V, and let k[V]^G be the corresponding algebra of invariant polynomial functions. A separating set S ⊆ k[V]^G is a set of polynomials with the property that for all v, w ∈ V, if there exists f ∈ k[V]^G separating v and w, then there exists f ∈ S separating v and w. In this article we consider the action of G = SL2(C) × SL2(C) on the C-vector space M of n-tuples of 2 × 2 matrices by multiplication on the left and the right. Minimal generating sets S_n of C[M]^G are known, and |S_n| = 1/24 (n^4 − 6n^3 + 23n^2 + 6n). In recent work, Domokos showed that for all n ≥ 1, S_n is a minimal separating set by inclusion, i.e. that no proper subset of S_n is a separating set. This does not necessarily mean that S_n has minimum cardinality among all separating sets for C[M]^G. Our main result shows that any separating set for C[M]^G has cardinality ≥ 5n−9. In particular, there is no separating set of size dim(C[M]^G) = 4n − 6 for n ≥ 4. Further, S_4 has indeed minimum cardinality as a separating set, but for n ≥ 5 there may exist a smaller separating set than S_n. |

Keywords | Invariant theory; Matrix semi-invariants; Separating set; Separating variety; Similarity; Quivers |

Sustainable Development Goals | 9 Industry, innovation and infrastructure |

Middlesex University Theme | Creativity, Culture & Enterprise |

Language | English |

Publisher | Elsevier |

Journal | Linear Algebra and its Applications |

ISSN | 0024-3795 |

Electronic | 1873-1856 |

Publication dates | |

Online | 15 Jun 2023 |

Print | 01 Oct 2023 |

Publication process dates | |

Deposited | 16 Jun 2023 |

Accepted | 12 Jun 2023 |

Submitted | 01 Dec 2022 |

Output status | Published |

Publisher's version | License File Access Level Open |

Copyright Statement | © 2023 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) |

Digital Object Identifier (DOI) | https://doi.org/10.1016/j.laa.2023.06.012 |

Web of Science identifier | WOS:001030600400001 |

https://repository.mdx.ac.uk/item/8q6vz

## Download files

###### Publisher's version

Elmer-2023-The_separating_variety_for_matrix_semi-invariants.pdf | ||

License: CC BY 4.0 | ||

File access level: Open |

##### 38

total views##### 6

total downloads##### 5

views this month##### 2

downloads this month

## Export as

## Related outputs

##### The separating variety for 2 x 2 matrix invariants

Elmer, J. 2023. The separating variety for 2 x 2 matrix invariants.*Linear and Multilinear Algebra.*72 (3), pp. 389-411. https://doi.org/10.1080/03081087.2022.2158300

##### Modular covariants of cyclic groups of order p

Elmer, J. 2022. Modular covariants of cyclic groups of order p.*Journal of Algebra.*598, pp. 134-155. https://doi.org/10.1016/j.jalgebra.2022.01.015

##### The relative Heller operator and relative cohomology for the Klein 4-group

Elmer, J. 2022. The relative Heller operator and relative cohomology for the Klein 4-group.*Communications in Algebra.*50 (4), pp. 1518-1534. https://doi.org/10.1080/00927872.2021.1984496

##### Degree bounds for modular covariants

Elmer, J. and Sezer, M. 2020. Degree bounds for modular covariants.*Forum Mathematicum.*32 (4), pp. 905-910. https://doi.org/10.1515/forum-2019-0196

##### Locally finite derivations and modular coinvariants

Elmer, J. and Sezer, M. 2018. Locally finite derivations and modular coinvariants.*Quarterly Journal of Mathematics.*69 (3), pp. 1053-1062. https://doi.org/10.1093/qmath/hay013

##### Symmetric powers and modular invariants of elementary abelian p-groups

Elmer, J. 2017. Symmetric powers and modular invariants of elementary abelian p-groups.*Journal of Algebra.*492, pp. 157-184. https://doi.org/10.1016/j.jalgebra.2017.07.020

##### On separating a fixed point from zero by invariants

Elmer, J. and Kohls, M. 2017. On separating a fixed point from zero by invariants.*Communications in Algebra.*45 (1), pp. 371-375. https://doi.org/10.1080/00927872.2016.1175465

##### Zero-separating invariants for linear algebraic groups

Elmer, J. and Kohls, M. 2016. Zero-separating invariants for linear algebraic groups.*Proceedings of the Edinburgh Mathematical Society.*59 (4), pp. 911-924. https://doi.org/10.1017/S0013091515000322

##### Zero-separating invariants for finite groups

Elmer, J. and Kohls, M. 2014. Zero-separating invariants for finite groups.*Journal of Algebra.*411, pp. 92-113. https://doi.org/10.1016/j.jalgebra.2014.03.044

##### Separating invariants for arbitrary linear actions of the additive group

Dufresne, E., Elmer, J. and Sezer, M. 2014. Separating invariants for arbitrary linear actions of the additive group.*Manuscripta Mathematica.*143 (1), pp. 207-219. https://doi.org/10.1007/s00229-013-0625-y

##### Separating Invariants for the Basic G_a actions

Elmer, J. and Kohls, M. 2012. Separating Invariants for the Basic G_a actions.*Proceedings of the American Mathematical Society.*140 (1), pp. 135-146.

##### On the depth of separating invariants for finite groups

Elmer, J. 2012. On the depth of separating invariants for finite groups.*Beitrage zur Algebra und Geometrie.*53 (1), pp. 31-39.

##### The Cohen-Macaulay property of separating invariants of finite groups

Dufresne, E., Elmer, J. and Kohls, M. 2009. The Cohen-Macaulay property of separating invariants of finite groups.*Transformation Groups.*14 (4), pp. 771-785.

##### Depth and detection in modular invariant theory

Elmer, J. 2009. Depth and detection in modular invariant theory.*Journal of Algebra.*322 (5), pp. 1653-1666. https://doi.org/10.1016/j.jalgebra.2009.04.036

##### On the depth of modular invariant rings for the groups C_p x C_p

Elmer, J. and Fleischmann, P. 2009. On the depth of modular invariant rings for the groups C_p x C_p. in: Symmetry and Spaces: in honour of Gerry Schwarz Birkhauser Boston.##### Associated primes for cohomology modules

Elmer, J. 2008. Associated primes for cohomology modules.*Archiv der Mathematik.*91 (6), pp. 481-485. https://doi.org/10.1007/s00013-008-2902-7