Symmetric powers and modular invariants of elementary abelian p-groups

Article


Elmer, J. 2017. Symmetric powers and modular invariants of elementary abelian p-groups. Journal of Algebra. 492, pp. 157-184. https://doi.org/10.1016/j.jalgebra.2017.07.020
TypeArticle
TitleSymmetric powers and modular invariants of elementary abelian p-groups
AuthorsElmer, J.
Abstract

Let E be a elementary abelian p-group of order q = p^n. Let W be a faithful indecomposable representation of E with dimension 2 over a field k of characteristic p, and let V = S^m(W ) with m < q. We prove that the rings of invariants k[V ]^E are generated by elements of degree ≤ q and relative transfers. This extends recent work of Wehlau on modular invariants of cyclic groups of order p. If m < p we prove that k[V ]^E is generated by invariants of degree ≤ 2q −3, extending a result of Fleischmann, Sezer, Shank and Woodcock for cyclic groups of order p . Our methods are primarily representation-theoretic, and along the way we prove that for any d < q with d + m ≥ q, S^d (V^∗) is projective relative to the set of subgroups of E with order ≤ m, and that the sequence S^d (V^∗) is periodic with period q, modulo summands which are projective relative to the same set of subgroups. These results extend results of Almkvist and Fossum on cyclic groups of prime order.

PublisherElsevier
JournalJournal of Algebra
ISSN0021-8693
Publication dates
Online04 Aug 2017
Print15 Dec 2017
Publication process dates
Deposited12 Jul 2017
Accepted03 Jul 2017
Output statusPublished
Accepted author manuscript
License
File Access Level
Restricted
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jalgebra.2017.07.020
LanguageEnglish
First submitted version
File Access Level
Restricted
Permalink -

https://repository.mdx.ac.uk/item/867qy

Restricted files

First submitted version

  • 59
    total views
  • 1
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

The separating variety for 2 x 2 matrix invariants
Elmer, J. 2024. The separating variety for 2 x 2 matrix invariants. Linear and Multilinear Algebra. 72 (3), pp. 389-411. https://doi.org/10.1080/03081087.2022.2158300
The separating variety for matrix semi-invariants
Elmer, J. 2023. The separating variety for matrix semi-invariants. Linear Algebra and its Applications. 674, pp. 466-492. https://doi.org/10.1016/j.laa.2023.06.012
Modular covariants of cyclic groups of order p
Elmer, J. 2022. Modular covariants of cyclic groups of order p. Journal of Algebra. 598, pp. 134-155. https://doi.org/10.1016/j.jalgebra.2022.01.015
The relative Heller operator and relative cohomology for the Klein 4-group
Elmer, J. 2022. The relative Heller operator and relative cohomology for the Klein 4-group. Communications in Algebra. 50 (4), pp. 1518-1534. https://doi.org/10.1080/00927872.2021.1984496
Degree bounds for modular covariants
Elmer, J. and Sezer, M. 2020. Degree bounds for modular covariants. Forum Mathematicum. 32 (4), pp. 905-910. https://doi.org/10.1515/forum-2019-0196
Locally finite derivations and modular coinvariants
Elmer, J. and Sezer, M. 2018. Locally finite derivations and modular coinvariants. Quarterly Journal of Mathematics. 69 (3), pp. 1053-1062. https://doi.org/10.1093/qmath/hay013
On separating a fixed point from zero by invariants
Elmer, J. and Kohls, M. 2017. On separating a fixed point from zero by invariants. Communications in Algebra. 45 (1), pp. 371-375. https://doi.org/10.1080/00927872.2016.1175465
Zero-separating invariants for finite groups
Elmer, J. and Kohls, M. 2014. Zero-separating invariants for finite groups. Journal of Algebra. 411, pp. 92-113. https://doi.org/10.1016/j.jalgebra.2014.03.044
Separating invariants for arbitrary linear actions of the additive group
Dufresne, E., Elmer, J. and Sezer, M. 2014. Separating invariants for arbitrary linear actions of the additive group. Manuscripta Mathematica. 143 (1), pp. 207-219. https://doi.org/10.1007/s00229-013-0625-y
Separating Invariants for the Basic G_a actions
Elmer, J. and Kohls, M. 2012. Separating Invariants for the Basic G_a actions. Proceedings of the American Mathematical Society. 140 (1), pp. 135-146.
On the depth of separating invariants for finite groups
Elmer, J. 2012. On the depth of separating invariants for finite groups. Beitrage zur Algebra und Geometrie. 53 (1), pp. 31-39.
The Cohen-Macaulay property of separating invariants of finite groups
Dufresne, E., Elmer, J. and Kohls, M. 2009. The Cohen-Macaulay property of separating invariants of finite groups. Transformation Groups. 14 (4), pp. 771-785.
Depth and detection in modular invariant theory
Elmer, J. 2009. Depth and detection in modular invariant theory. Journal of Algebra. 322 (5), pp. 1653-1666. https://doi.org/10.1016/j.jalgebra.2009.04.036
On the depth of modular invariant rings for the groups C_p x C_p
Elmer, J. and Fleischmann, P. 2009. On the depth of modular invariant rings for the groups C_p x C_p. in: Symmetry and Spaces: in honour of Gerry Schwarz Birkhauser Boston.
Associated primes for cohomology modules
Elmer, J. 2008. Associated primes for cohomology modules. Archiv der Mathematik. 91 (6), pp. 481-485. https://doi.org/10.1007/s00013-008-2902-7
Zero-separating invariants for linear algebraic groups
Elmer, J. and Kohls, M. 2016. Zero-separating invariants for linear algebraic groups. Proceedings of the Edinburgh Mathematical Society. 59 (4), pp. 911-924. https://doi.org/10.1017/S0013091515000322