A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)
Article
Ballesteros, C., Jiménez, J. and Viavattene, C. 2018. A multi-component flood risk assessment in the Maresme coast (NW Mediterranean). Natural Hazards. 90 (1), pp. 265-292. https://doi.org/10.1007/s11069-017-3042-9
Type | Article |
---|---|
Title | A multi-component flood risk assessment in the Maresme coast (NW Mediterranean) |
Authors | Ballesteros, C., Jiménez, J. and Viavattene, C. |
Abstract | Coastal regions are the areas most threatened by natural hazards, with floods being the most frequent and significant threat in terms of their induced impacts, and therefore, any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with various processes acting at different scales: coastal storms, flash floods, and sea level rise (SLR). In order to address the problem as a whole, this study presents a ethodology to undertake a preliminary integrated risk assessment that determines the magnitude of the different flood processes (flash flood, marine storm, SLR) and their associated consequences, taking into account their temporal and spatial scales. The risk is quantified using specific indicators to assess the magnitude of the hazard (for each component) and the consequences in a common scale. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the areas at greatest risk and the risk components that have the greatest impact. This methodology is applied on the Maresme coast (NW Mediterranean, Spain), which can be considered representative of developed areas of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area of relatively low overall risk, although some hot spots have been identified with high-risk values, with flash flooding being the principal risk process. |
Research Group | Flood Hazard Research Centre |
Publisher | Springer |
Journal | Natural Hazards |
ISSN | 0921-030X |
Electronic | 1573-0840 |
Publication dates | |
Online | 18 Sep 2017 |
31 Jan 2018 | |
Publication process dates | |
Deposited | 20 Sep 2017 |
Submitted | 25 Feb 2017 |
Accepted | 04 Sep 2017 |
Output status | Published |
Publisher's version | License |
Copyright Statement | © The Author(s) 2017. |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s11069-017-3042-9 |
Language | English |
https://repository.mdx.ac.uk/item/872z1
Download files
79
total views27
total downloads0
views this month2
downloads this month
Export as
Related outputs
Application of a fuzzy, indicator‐based methodology for investigating the functional vulnerability of critical infrastructures to flood hazards
Binesh, N., Aronica, G.T., Hadzic, E., Sulejmanovic, S., Milisic, H., Deda, M., Koxhai, H., McCarthy, S., Rossello, L., Viavattene, C., Mujic, F., Brigandi, G., Gabellani, S. and Masi, R. 2025. Application of a fuzzy, indicator‐based methodology for investigating the functional vulnerability of critical infrastructures to flood hazards. Journal of Flood Risk Management. 18 (1). https://doi.org/10.1111/jfr3.13030Revised approach for the calculation of groundwater flooding annual average damages: establishing a probability-based relationship for groundwater flooding
Viavattene, C., Hardman, D., Penning-Rowsell, E., Morris, J., Chatterton, J., Parker, D. and Priest, S. 2024. Revised approach for the calculation of groundwater flooding annual average damages: establishing a probability-based relationship for groundwater flooding. Flood Hazard Research Centre, Middlesex University.Natural flood management: Opportunities to implement nature‐based solutions on privately owned land
Thaler, T., Hudson, P., Viavattene, C. and Green, C. 2023. Natural flood management: Opportunities to implement nature‐based solutions on privately owned land. WIREs Water. 10 (3). https://doi.org/10.1002/wat2.1637Estimation of Scottish pluvial flooding Expected Annual Damages using interpolation techniques
Viavattene, C., Fadipe, D., Old, J., Thompson, V. and Thorburn, K. 2022. Estimation of Scottish pluvial flooding Expected Annual Damages using interpolation techniques. Water. 14 (3), pp. 1-17. https://doi.org/10.3390/w14030308Bayesian Data-Driven approach enhances synthetic flood loss models
Sairam, N., Schröter, K., Carisi, F., Wagenaar, D., Domeneghetti, A., Molinari, D., Brill, F., Priest, S., Viavattene, C., Merz, B. and Kreibich, H. 2020. Bayesian Data-Driven approach enhances synthetic flood loss models. Environmental Modelling and Software. 132. https://doi.org/10.1016/j.envsoft.2020.104798A method for monetising the mental health costs of flooding
Viavattene, C. and Priest, S. 2020. A method for monetising the mental health costs of flooding. Bristol, UK Environment Agency.