Analyzing and predicting the spatial penetration of Airbnb in U.S. cities

Article


Quattrone, G., Greatorex, A., Quercia, D., Capra, L. and Musolesi, M. 2018. Analyzing and predicting the spatial penetration of Airbnb in U.S. cities. EPJ Data Science. 7 (1), pp. 1-24. https://doi.org/10.1140/epjds/s13688-018-0156-6
TypeArticle
TitleAnalyzing and predicting the spatial penetration of Airbnb in U.S. cities
AuthorsQuattrone, G., Greatorex, A., Quercia, D., Capra, L. and Musolesi, M.
Abstract

In the hospitality industry, the room and apartment sharing platform of Airbnb has been accused of unfair competition. Detractors have pointed out the chronic lack of proper legislation. Unfortunately, there is little quantitative evidence about Airbnb's spatial penetration upon which to base such a legislation. In this study, we analyze Airbnb's spatial distribution in eight U.S. urban areas, in relation to both geographic, socio-demographic, and economic information. We find that, despite being very different in terms of population composition, size, and wealth, all eight cities exhibit the same pattern: that is, areas of high Airbnb presence are those occupied by the \newpart{``talented and creative''} classes, and those that are close to city centers. This result is consistent so much so that the accuracy of predicting Airbnb's spatial penetration is as high as 0.725.

PublisherSpringer Open
JournalEPJ Data Science
ISSN2193-1127
Publication dates
Online19 Sep 2018
Print31 Dec 2018
Publication process dates
Deposited05 Nov 2018
Accepted16 Aug 2018
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Digital Object Identifier (DOI)https://doi.org/10.1140/epjds/s13688-018-0156-6
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/88006

Download files


Publisher's version
s13688-018-0156-6.pdf
License: CC BY 4.0
File access level: Open

  • 31
    total views
  • 9
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Establishing hybrid deep learning models for regional daily rainfall time series forecasting in the United Kingdom
Harilal, G.T., Dixit, A. and Quattrone, G. 2024. Establishing hybrid deep learning models for regional daily rainfall time series forecasting in the United Kingdom. Engineering Applications of Artificial Intelligence. 133 (F). https://doi.org/10.1016/j.engappai.2024.108581
A global-scale analysis of the sharing economy model – an AirBnB case study
Quattrone, G., Kusek, N. and Capra, L. 2022. A global-scale analysis of the sharing economy model – an AirBnB case study. EPJ Data Science. 11 (1), pp. 1-29. https://doi.org/10.1140/epjds/s13688-022-00349-3
Nowcasting gentrification using Airbnb data
Jain, S., Proserpio, D., Quattrone, G. and Quercia, D. 2021. Nowcasting gentrification using Airbnb data. CSCW 2021: The 24th ACM conference on Computer-Supported Cooperative Work and Social Computing. Virtual conference 23 - 27 Oct 2021 Association for Computing Machinery (ACM). https://doi.org/10.1145/3449112
Work always in progress: analysing maintenance practices in spatial crowd-sourced datasets
Quattrone, G., Dittus, M. and Capra, L. 2017. Work always in progress: analysing maintenance practices in spatial crowd-sourced datasets. CSCW 2017. Portland, Oregon, United States 25 Feb - 01 Mar 2017 Association for Computing Machinery (ACM). pp. 1876-1889 https://doi.org/10.1145/2998181.2998267
Mass participation during emergency response: event-centric crowd-sourcing in humanitarian mapping
Dittus, M., Quattrone, G. and Capra, L. 2017. Mass participation during emergency response: event-centric crowd-sourcing in humanitarian mapping. Lee, C. and Poltrock, S. (ed.) CSCW 2017. Portland, Oregon, United States 25 Feb - 01 Mar 2017 Association for Computing Machinery (ACM). pp. 1290-1303 https://doi.org/10.1145/2998181.2998216
Measuring urban deprivation from user generated content
Venerandi, A., Quattrone, G., Capra, L., Quercia, D. and Saez-Trumper, D. 2015. Measuring urban deprivation from user generated content. Fussel, S., Lutters, W., Ringel Morris, M. and Reddy, M. (ed.) CSCW 2015. Vancouver, Canada 14 - 18 Mar 2015 Association for Computing Machinery (ACM). pp. 254-264
There’s no such thing as the perfect map: quantifying bias in spatial crowd-sourcing datasets
Quattrone, G., Capra, L. and De Meo, P. 2015. There’s no such thing as the perfect map: quantifying bias in spatial crowd-sourcing datasets. Cosley, D., Forte, A., Ciolfi, L. and McDonalld, D. (ed.) CSCW 2015. Vancouver, Canada 14 - 18 May 2015 Association for Computing Machinery (ACM). pp. 1021-1032 https://doi.org/10.1145/2675133.2675235
Social interactions or business transactions? What customer reviews disclose about Airbnb marketplace
Quattrone, G., Nocera, A., Capra, L. and Quercia, D. 2020. Social interactions or business transactions? What customer reviews disclose about Airbnb marketplace. Huang, Y., King, I., Liu, T. and van Steen, M. (ed.) WWW'20. Taipei, Taiwan 20 - 24 Apr 2020 Association for Computing Machinery (ACM). pp. 1526-1536 https://doi.org/10.1145/3366423.3380225
Analysing volunteer engagement in humanitarian mapping: building contributor communities at large scale
Dittus, M., Quattrone, G. and Capra, L. 2016. Analysing volunteer engagement in humanitarian mapping: building contributor communities at large scale. 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing - CSCW '16. San Francisco, CA, USA 27 Feb - 02 Mar 2016 Association for Computing Machinery (ACM). pp. 108-118 https://doi.org/10.1145/2818048.2819939
Guns of Brixton: which London neighborhoods host gang activity?
Venerandi, A., Quattrone, G. and Capra, L. 2016. Guns of Brixton: which London neighborhoods host gang activity? Urb Iot 2016: 2nd International Conference on IoT in Urban Space. Tokyo, Japan 24 - 25 May 2016 Association for Computing Machinery (ACM). pp. 22-28 https://doi.org/10.1145/2962735.2962750
Exploring maintenance practices in crowd-mapping
Quattrone, G., Dittus, M. and Capra, L. 2016. Exploring maintenance practices in crowd-mapping. Hypertext 2016: 27th ACM Conference on Hypertext and Social Media. Halifax, Nova Scotia, Canada 10 - 13 Jul 2016 Association for Computing Machinery (ACM). pp. 285-290 https://doi.org/10.1145/2914586.2914621
Social contribution settings and newcomer retention in humanitarian crowd mapping
Dittus, M., Quattrone, G. and Capra, L. 2016. Social contribution settings and newcomer retention in humanitarian crowd mapping. 8th International Conference Social Informatics (SocInfo 2016). Bellevue, WA, USA 11 - 14 Nov 2016 Springer. pp. 179-193 https://doi.org/10.1007/978-3-319-47874-6_13
City form and well-being: what makes London neighborhoods good places to live?
Venerandi, A., Quattrone, G. and Capra, L. 2016. City form and well-being: what makes London neighborhoods good places to live? 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2016). Burlingame, CA, USA 31 Oct - 03 Nov 2016 Association for Computing Machinery (ACM). https://doi.org/10.1145/2996913.2997011
Is the sharing economy about sharing at all? A linguistic analysis of Airbnb reviews
Quattrone, G., Nicolazzo, S., Nocera, A., Quercia, D. and Capra, L. 2018. Is the sharing economy about sharing at all? A linguistic analysis of Airbnb reviews. ICWSM 2018: Twelfth International AAAI Conference on Web and Social Media. Palo Alto, California, United States 25 - 28 Jun 2018 Association for the Advancement of Artificial Intelligence (AAAI). pp. 668 https://doi.org/10.1609/icwsm.v12i1.15065
A scalable method to quantify the relationship between urban form and socio-economic indexes
Venerandi, A., Quattrone, G. and Capra, L. 2018. A scalable method to quantify the relationship between urban form and socio-economic indexes. EPJ Data Science. 7 (1). https://doi.org/10.1140/epjds/s13688-018-0132-1
Who benefits from the "sharing" economy of Airbnb?
Quattrone, G., Proserpio, D., Quercia, D., Capra, L. and Musolesi, M. 2016. Who benefits from the "sharing" economy of Airbnb? WWW 2016: 25th International Conference on World Wide Web. Montreal, Canada 11 - 15 Apr 2016 Association for Computing Machinery (ACM). pp. 1385-1394 https://doi.org/10.1145/2872427.2874815