A global-scale analysis of the sharing economy model – an AirBnB case study

Article


Quattrone, G., Kusek, N. and Capra, L. 2022. A global-scale analysis of the sharing economy model – an AirBnB case study. EPJ Data Science. 11 (1), pp. 1-29. https://doi.org/10.1140/epjds/s13688-022-00349-3
TypeArticle
TitleA global-scale analysis of the sharing economy model – an AirBnB case study
AuthorsQuattrone, G., Kusek, N. and Capra, L.
Abstract

Abstract: The sharing economy model has changed the way in which people engage in a variety of activities, including travelling, trading, working, and lending/borrowing money. Several studies exist that aim to understand, quantify and model such phenomenon, but most such studies are geographically focused on countries in the Western World. Knowledge about the penetration and adoption of this novel market model in non-Western countries is much more limited, and almost completely lacking when it comes to emerging markets, where it was touted to bring the biggest benefits and be a game changer to uplift people economically. To close the gap, we chose Airbnb as an example of sharing economy model with worldwide market penetration, and performed a large-scale quantitative study of its penetration and adoption in seven cities in Asia, five cities in Latin America. We compared findings against seven cities in the Western World, and observed patterns to be similar across all locales, with two notable exceptions: the geographic penetration of such services, and the experience that guests travelling to such destinations shared in their reviews.

KeywordsRegular Article, Sharing economy, Airbnb, Market analysis, Linguistic analysis
PublisherSpringer Berlin. Heidelberg
JournalEPJ Data Science
ISSN2193-1127
Electronic2193-1127
Publication dates
Online29 Jun 2022
PrintDec 2022
Publication process dates
Deposited30 Jun 2022
Submitted16 Nov 2021
Accepted07 Jun 2022
Output statusPublished
Publisher's version
License
Copyright Statement

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Digital Object Identifier (DOI)https://doi.org/10.1140/epjds/s13688-022-00349-3
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/89x3v

  • 78
    total views
  • 26
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Establishing hybrid deep learning models for regional daily rainfall time series forecasting in the United Kingdom
Harilal, G.T., Dixit, A. and Quattrone, G. 2024. Establishing hybrid deep learning models for regional daily rainfall time series forecasting in the United Kingdom. Engineering Applications of Artificial Intelligence. 133 (F). https://doi.org/10.1016/j.engappai.2024.108581
Nowcasting gentrification using Airbnb data
Jain, S., Proserpio, D., Quattrone, G. and Quercia, D. 2021. Nowcasting gentrification using Airbnb data. CSCW 2021: The 24th ACM conference on Computer-Supported Cooperative Work and Social Computing. Virtual conference 23 - 27 Oct 2021 Association for Computing Machinery (ACM). https://doi.org/10.1145/3449112
Work always in progress: analysing maintenance practices in spatial crowd-sourced datasets
Quattrone, G., Dittus, M. and Capra, L. 2017. Work always in progress: analysing maintenance practices in spatial crowd-sourced datasets. CSCW 2017. Portland, Oregon, United States 25 Feb - 01 Mar 2017 Association for Computing Machinery (ACM). pp. 1876-1889 https://doi.org/10.1145/2998181.2998267
Mass participation during emergency response: event-centric crowd-sourcing in humanitarian mapping
Dittus, M., Quattrone, G. and Capra, L. 2017. Mass participation during emergency response: event-centric crowd-sourcing in humanitarian mapping. Lee, C. and Poltrock, S. (ed.) CSCW 2017. Portland, Oregon, United States 25 Feb - 01 Mar 2017 Association for Computing Machinery (ACM). pp. 1290-1303 https://doi.org/10.1145/2998181.2998216
Measuring urban deprivation from user generated content
Venerandi, A., Quattrone, G., Capra, L., Quercia, D. and Saez-Trumper, D. 2015. Measuring urban deprivation from user generated content. Fussel, S., Lutters, W., Ringel Morris, M. and Reddy, M. (ed.) CSCW 2015. Vancouver, Canada 14 - 18 Mar 2015 Association for Computing Machinery (ACM). pp. 254-264
There’s no such thing as the perfect map: quantifying bias in spatial crowd-sourcing datasets
Quattrone, G., Capra, L. and De Meo, P. 2015. There’s no such thing as the perfect map: quantifying bias in spatial crowd-sourcing datasets. Cosley, D., Forte, A., Ciolfi, L. and McDonalld, D. (ed.) CSCW 2015. Vancouver, Canada 14 - 18 May 2015 Association for Computing Machinery (ACM). pp. 1021-1032 https://doi.org/10.1145/2675133.2675235
Social interactions or business transactions? What customer reviews disclose about Airbnb marketplace
Quattrone, G., Nocera, A., Capra, L. and Quercia, D. 2020. Social interactions or business transactions? What customer reviews disclose about Airbnb marketplace. Huang, Y., King, I., Liu, T. and van Steen, M. (ed.) WWW'20. Taipei, Taiwan 20 - 24 Apr 2020 Association for Computing Machinery (ACM). pp. 1526-1536 https://doi.org/10.1145/3366423.3380225
Analysing volunteer engagement in humanitarian mapping: building contributor communities at large scale
Dittus, M., Quattrone, G. and Capra, L. 2016. Analysing volunteer engagement in humanitarian mapping: building contributor communities at large scale. 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing - CSCW '16. San Francisco, CA, USA 27 Feb - 02 Mar 2016 Association for Computing Machinery (ACM). pp. 108-118 https://doi.org/10.1145/2818048.2819939
Guns of Brixton: which London neighborhoods host gang activity?
Venerandi, A., Quattrone, G. and Capra, L. 2016. Guns of Brixton: which London neighborhoods host gang activity? Urb Iot 2016: 2nd International Conference on IoT in Urban Space. Tokyo, Japan 24 - 25 May 2016 Association for Computing Machinery (ACM). pp. 22-28 https://doi.org/10.1145/2962735.2962750
Exploring maintenance practices in crowd-mapping
Quattrone, G., Dittus, M. and Capra, L. 2016. Exploring maintenance practices in crowd-mapping. Hypertext 2016: 27th ACM Conference on Hypertext and Social Media. Halifax, Nova Scotia, Canada 10 - 13 Jul 2016 Association for Computing Machinery (ACM). pp. 285-290 https://doi.org/10.1145/2914586.2914621
Social contribution settings and newcomer retention in humanitarian crowd mapping
Dittus, M., Quattrone, G. and Capra, L. 2016. Social contribution settings and newcomer retention in humanitarian crowd mapping. 8th International Conference Social Informatics (SocInfo 2016). Bellevue, WA, USA 11 - 14 Nov 2016 Springer. pp. 179-193 https://doi.org/10.1007/978-3-319-47874-6_13
City form and well-being: what makes London neighborhoods good places to live?
Venerandi, A., Quattrone, G. and Capra, L. 2016. City form and well-being: what makes London neighborhoods good places to live? 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2016). Burlingame, CA, USA 31 Oct - 03 Nov 2016 Association for Computing Machinery (ACM). https://doi.org/10.1145/2996913.2997011
Is the sharing economy about sharing at all? A linguistic analysis of Airbnb reviews
Quattrone, G., Nicolazzo, S., Nocera, A., Quercia, D. and Capra, L. 2018. Is the sharing economy about sharing at all? A linguistic analysis of Airbnb reviews. ICWSM 2018: Twelfth International AAAI Conference on Web and Social Media. Palo Alto, California, United States 25 - 28 Jun 2018 Association for the Advancement of Artificial Intelligence (AAAI). pp. 668 https://doi.org/10.1609/icwsm.v12i1.15065
A scalable method to quantify the relationship between urban form and socio-economic indexes
Venerandi, A., Quattrone, G. and Capra, L. 2018. A scalable method to quantify the relationship between urban form and socio-economic indexes. EPJ Data Science. 7 (1). https://doi.org/10.1140/epjds/s13688-018-0132-1
Analyzing and predicting the spatial penetration of Airbnb in U.S. cities
Quattrone, G., Greatorex, A., Quercia, D., Capra, L. and Musolesi, M. 2018. Analyzing and predicting the spatial penetration of Airbnb in U.S. cities. EPJ Data Science. 7 (1), pp. 1-24. https://doi.org/10.1140/epjds/s13688-018-0156-6
Who benefits from the "sharing" economy of Airbnb?
Quattrone, G., Proserpio, D., Quercia, D., Capra, L. and Musolesi, M. 2016. Who benefits from the "sharing" economy of Airbnb? WWW 2016: 25th International Conference on World Wide Web. Montreal, Canada 11 - 15 Apr 2016 Association for Computing Machinery (ACM). pp. 1385-1394 https://doi.org/10.1145/2872427.2874815