Establishing hybrid deep learning models for regional daily rainfall time series forecasting in the United Kingdom

Article


Harilal, G.T., Dixit, A. and Quattrone, G. 2024. Establishing hybrid deep learning models for regional daily rainfall time series forecasting in the United Kingdom. Engineering Applications of Artificial Intelligence. 133 (F). https://doi.org/10.1016/j.engappai.2024.108581
TypeArticle
TitleEstablishing hybrid deep learning models for regional daily rainfall time series forecasting in the United Kingdom
AuthorsHarilal, G.T., Dixit, A. and Quattrone, G.
Abstract

Accurate daily rainfall predictions are becoming increasingly important, particularly in the era of changing climate conditions. These predictions are essential for various sectors, including agriculture, water resource management, flood preparedness, and pollution monitoring. This study delves into the complex relationship between meteorological data, with a focus on the accurate forecasting of rainfall by identifying the impact of temperature variations on rainfall patterns in different regions of the United Kingdom (UK). The meteorological data was collected from the National Aeronautics and Space Administration (NASA) and covers daily observations from January 1, 1981, to July 31, 2023, in four distinct regions of the UK: England, Wales, Scotland, and Northern Ireland. The main objective of this research is to introduce hybrid deep learning models, namely Convolutional Neural Networks (CNN) with Long Short Term Memory (LSTM) and Recurrent Neural Networks (RNN) with Long Short Term Memory (LSTM), for predicting daily rainfall using time-series data from the four UK countries, specifically designed for daily rainfall forecasting of four regions in the UK. The models are fine-tuned using the hyperparameter optimisation method. Comprehensive performance evaluations, including Loss Function, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), are employed to compare the effectiveness of our proposed hybrid models with established baseline models, including LSTM, stacked LSTM, and Bidirectional LSTM. Additionally, a visual analysis of actual and predicted rainfall data is conducted to identify the most proficient forecasting model for each region. Results reveal that the proposed hybrid models consistently outperform other models in terms of both quantitative performance metrics and visual assessments across all four regions in the UK. This research contributes to improved rainfall forecasting methodologies, which are critical for sustainable agricultural practices and resource management.

KeywordsDeep learning; Long short term memory; Recurrent neural networks; Convolutional neural networks; Daily rainfall forecasting
Sustainable Development Goals13 Climate action
Middlesex University ThemeSustainability
PublisherElsevier
JournalEngineering Applications of Artificial Intelligence
ISSN0952-1976
Publication dates
Online21 May 2024
PrintJul 2024
Publication process dates
Submitted15 Dec 2023
Accepted04 May 2024
Deposited13 Jan 2025
Output statusPublished
Publisher's version
License
File Access Level
Open
Digital Object Identifier (DOI)https://doi.org/10.1016/j.engappai.2024.108581
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/160w20

  • 0
    total views
  • 1
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

A global-scale analysis of the sharing economy model – an AirBnB case study
Quattrone, G., Kusek, N. and Capra, L. 2022. A global-scale analysis of the sharing economy model – an AirBnB case study. EPJ Data Science. 11 (1), pp. 1-29. https://doi.org/10.1140/epjds/s13688-022-00349-3
Nowcasting gentrification using Airbnb data
Jain, S., Proserpio, D., Quattrone, G. and Quercia, D. 2021. Nowcasting gentrification using Airbnb data. CSCW 2021: The 24th ACM conference on Computer-Supported Cooperative Work and Social Computing. Virtual conference 23 - 27 Oct 2021 Association for Computing Machinery (ACM). https://doi.org/10.1145/3449112
Work always in progress: analysing maintenance practices in spatial crowd-sourced datasets
Quattrone, G., Dittus, M. and Capra, L. 2017. Work always in progress: analysing maintenance practices in spatial crowd-sourced datasets. CSCW 2017. Portland, Oregon, United States 25 Feb - 01 Mar 2017 Association for Computing Machinery (ACM). pp. 1876-1889 https://doi.org/10.1145/2998181.2998267
Mass participation during emergency response: event-centric crowd-sourcing in humanitarian mapping
Dittus, M., Quattrone, G. and Capra, L. 2017. Mass participation during emergency response: event-centric crowd-sourcing in humanitarian mapping. Lee, C. and Poltrock, S. (ed.) CSCW 2017. Portland, Oregon, United States 25 Feb - 01 Mar 2017 Association for Computing Machinery (ACM). pp. 1290-1303 https://doi.org/10.1145/2998181.2998216
Measuring urban deprivation from user generated content
Venerandi, A., Quattrone, G., Capra, L., Quercia, D. and Saez-Trumper, D. 2015. Measuring urban deprivation from user generated content. Fussel, S., Lutters, W., Ringel Morris, M. and Reddy, M. (ed.) CSCW 2015. Vancouver, Canada 14 - 18 Mar 2015 Association for Computing Machinery (ACM). pp. 254-264
There’s no such thing as the perfect map: quantifying bias in spatial crowd-sourcing datasets
Quattrone, G., Capra, L. and De Meo, P. 2015. There’s no such thing as the perfect map: quantifying bias in spatial crowd-sourcing datasets. Cosley, D., Forte, A., Ciolfi, L. and McDonalld, D. (ed.) CSCW 2015. Vancouver, Canada 14 - 18 May 2015 Association for Computing Machinery (ACM). pp. 1021-1032 https://doi.org/10.1145/2675133.2675235
Social interactions or business transactions? What customer reviews disclose about Airbnb marketplace
Quattrone, G., Nocera, A., Capra, L. and Quercia, D. 2020. Social interactions or business transactions? What customer reviews disclose about Airbnb marketplace. Huang, Y., King, I., Liu, T. and van Steen, M. (ed.) WWW'20. Taipei, Taiwan 20 - 24 Apr 2020 Association for Computing Machinery (ACM). pp. 1526-1536 https://doi.org/10.1145/3366423.3380225
Analysing volunteer engagement in humanitarian mapping: building contributor communities at large scale
Dittus, M., Quattrone, G. and Capra, L. 2016. Analysing volunteer engagement in humanitarian mapping: building contributor communities at large scale. 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing - CSCW '16. San Francisco, CA, USA 27 Feb - 02 Mar 2016 Association for Computing Machinery (ACM). pp. 108-118 https://doi.org/10.1145/2818048.2819939
Guns of Brixton: which London neighborhoods host gang activity?
Venerandi, A., Quattrone, G. and Capra, L. 2016. Guns of Brixton: which London neighborhoods host gang activity? Urb Iot 2016: 2nd International Conference on IoT in Urban Space. Tokyo, Japan 24 - 25 May 2016 Association for Computing Machinery (ACM). pp. 22-28 https://doi.org/10.1145/2962735.2962750
Exploring maintenance practices in crowd-mapping
Quattrone, G., Dittus, M. and Capra, L. 2016. Exploring maintenance practices in crowd-mapping. Hypertext 2016: 27th ACM Conference on Hypertext and Social Media. Halifax, Nova Scotia, Canada 10 - 13 Jul 2016 Association for Computing Machinery (ACM). pp. 285-290 https://doi.org/10.1145/2914586.2914621
Social contribution settings and newcomer retention in humanitarian crowd mapping
Dittus, M., Quattrone, G. and Capra, L. 2016. Social contribution settings and newcomer retention in humanitarian crowd mapping. 8th International Conference Social Informatics (SocInfo 2016). Bellevue, WA, USA 11 - 14 Nov 2016 Springer. pp. 179-193 https://doi.org/10.1007/978-3-319-47874-6_13
City form and well-being: what makes London neighborhoods good places to live?
Venerandi, A., Quattrone, G. and Capra, L. 2016. City form and well-being: what makes London neighborhoods good places to live? 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2016). Burlingame, CA, USA 31 Oct - 03 Nov 2016 Association for Computing Machinery (ACM). https://doi.org/10.1145/2996913.2997011
Is the sharing economy about sharing at all? A linguistic analysis of Airbnb reviews
Quattrone, G., Nicolazzo, S., Nocera, A., Quercia, D. and Capra, L. 2018. Is the sharing economy about sharing at all? A linguistic analysis of Airbnb reviews. ICWSM 2018: Twelfth International AAAI Conference on Web and Social Media. Palo Alto, California, United States 25 - 28 Jun 2018 Association for the Advancement of Artificial Intelligence (AAAI). pp. 668 https://doi.org/10.1609/icwsm.v12i1.15065
A scalable method to quantify the relationship between urban form and socio-economic indexes
Venerandi, A., Quattrone, G. and Capra, L. 2018. A scalable method to quantify the relationship between urban form and socio-economic indexes. EPJ Data Science. 7 (1). https://doi.org/10.1140/epjds/s13688-018-0132-1
Analyzing and predicting the spatial penetration of Airbnb in U.S. cities
Quattrone, G., Greatorex, A., Quercia, D., Capra, L. and Musolesi, M. 2018. Analyzing and predicting the spatial penetration of Airbnb in U.S. cities. EPJ Data Science. 7 (1), pp. 1-24. https://doi.org/10.1140/epjds/s13688-018-0156-6
Who benefits from the "sharing" economy of Airbnb?
Quattrone, G., Proserpio, D., Quercia, D., Capra, L. and Musolesi, M. 2016. Who benefits from the "sharing" economy of Airbnb? WWW 2016: 25th International Conference on World Wide Web. Montreal, Canada 11 - 15 Apr 2016 Association for Computing Machinery (ACM). pp. 1385-1394 https://doi.org/10.1145/2872427.2874815