Comparative analysis of clustering algorithms and moodle plugin for creation of student heterogeneous groups in online university courses

Article


Nalli, G., Amendola, D., Perali, A. and Mostarda, L. 2021. Comparative analysis of clustering algorithms and moodle plugin for creation of student heterogeneous groups in online university courses. Applied Sciences. 11. https://doi.org/10.3390/app11135800
TypeArticle
TitleComparative analysis of clustering algorithms and moodle plugin for creation of student heterogeneous groups in online university courses
AuthorsNalli, G., Amendola, D., Perali, A. and Mostarda, L.
Abstract

Online learning environments such as e-learning platforms are often used to encourage collaborative activities amongst students. In this context, group work is often used to improve the learning outcomes. Group formation is often performed randomly since university courses can be composed of a large number of students. While random formation saves time and resources, the student heterogeneity in terms of learning capabilities is not guaranteed. Although advanced e-learning platforms such as Moodle are widely used, they lack plugins that allow the automatic formation of heterogeneous groups of students. This work proposes a novel intelligent plugin for Moodle that allows the creation of heterogeneous groups by using Machine Learning. This intelligent application can be used in order to improve the students’ performance in collaborative activities. Our machine learning approach first uses clustering algorithms on Moodle data to identify homogeneous groups that are composed of students having similar behavior. Heterogeneous groups are then created by combining students selected from different homogeneous groups. To this end, a novel algorithm and the corresponding software, which allow the creation of heterogeneous groups, have been developed. We have implemented our approach by realizing a Moodle plugin where teachers can create heterogeneous groups.

Keywordse-learning; machine learning; moodle; clustering; heterogeneous groups
Sustainable Development Goals4 Quality education
Middlesex University ThemeCreativity, Culture & Enterprise
PublisherMDPI AG
JournalApplied Sciences
ISSN
Electronic2076-3417
Publication dates
Print22 Jun 2021
Online22 Jun 2021
Publication process dates
Submitted06 May 2021
Accepted18 Jun 2021
Deposited14 Jun 2024
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)https://doi.org/10.3390/app11135800
Web of Science identifierWOS:000672275900001
Permalink -

https://repository.mdx.ac.uk/item/wx64y

Download files


Publisher's version
applsci-11-05800-v3.pdf
License: CC BY 4.0
File access level: Open

  • 19
    total views
  • 4
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Online application for the early detection of students at risk of failing through Artificial Intelligence
Nalli, G., Marconi, A., Karakatič, S., Brezočnik, L., Montagna, A., Amendola, D. and De Leone, R. 2024. Online application for the early detection of students at risk of failing through Artificial Intelligence. Minerva, T. and De Santis, A. (ed.) 2023 Italian Symposium on Digital Education. Reggio Emilia, Italy 13 - 15 Sep 2023 Pearson. pp. 56-62
Blockchain in e-learning platform to enhance trustworthy and sharing of micro-credentials
Bigiotti, A., Bottoni, M. and Nalli, G. 2024. Blockchain in e-learning platform to enhance trustworthy and sharing of micro-credentials. 36th International Conference on Advanced Information Systems Engineering Workshops. Limassol, Cyprus 03 - 07 Jun 2024 Cham, Switzerland. Springer. https://doi.org/10.1007/978-3-031-61003-5_1
Hybrid educational environments – using IoT to detect emotion changes during student interactions
Nalli, G., Dafoulas, G., Tsiakara, A., Langari, B., Mistry, K. and Tahmasebi Aria, F. 2023. Hybrid educational environments – using IoT to detect emotion changes during student interactions. Interaction Design and Architecture(s). 58 (1), pp. 39-52. https://doi.org/10.55612/s-5002-058-001
Online tutoring system for programming courses to improve exam pass rate
Nalli, G., Culmone, R., Perali, A. and Amendola, D. 2023. Online tutoring system for programming courses to improve exam pass rate. Journal of E-Learning and Knowledge Society. 19 (1), pp. 27-35. https://doi.org/10.20368/1971-8829/1135704
Machine Learning model for student drop-out prediction based on student engagement
Brezočnik, L., Nalli, G., De Leone, R., Val, S., Podgorelec, V. and Karakatič, S. 2023. Machine Learning model for student drop-out prediction based on student engagement. Karabegovic, I., Kovačević, A. and Mandzuka, S. (ed.) 9th International Conference on New Technologies, Development and Application. Sarajevo, Bosnia and Herzegovina 22 - 24 Jun 2023 Cham Springer. pp. 486–496 https://doi.org/10.1007/978-3-031-31066-9_54
Comparison of the effectiveness and performance of student workgroups in online wiki activities with and without AI
Nalli, G. and Smith, S. 2023. Comparison of the effectiveness and performance of student workgroups in online wiki activities with and without AI. 4th International Electronic Conference on Applied Sciences. Online 27 Oct - 10 Nov 2023 MDPI AG. https://doi.org/10.3390/ASEC2023-16273
Machine-learning-based software to group heterogeneous students for online peer assessment activities
Amendola, D., Nalli, G. and Miceli, C. 2023. Machine-learning-based software to group heterogeneous students for online peer assessment activities. Fulantelli, G., Burgos, D., Casalino, G., Cimitile, M., Lo Bosco, G. and Taibi, D. (ed.) 4th International Conference on Higher Education Learning Methodologies and Technologies Online. Palermo, Italy 21 - 23 Sep 2022 Cham Springer. https://doi.org/10.1007/978-3-031-29800-4_2
Artificial Intelligence to improve learning outcomes through online collaborative activities
Nalli, G., Amendola, D. and Smith, S. 2022. Artificial Intelligence to improve learning outcomes through online collaborative activities. Fotaris, P. and Blake, A. (ed.) 21st European Conference on e-Learning. Brighton, UK 27 - 28 Oct 2022 Academic Conferences and Publishing International (ACPI). pp. 475-479 https://doi.org/10.34190/ecel.21.1.661
Chatbot per Moodle: un assistente virtuale per i corsi universitari ad alto numero di studenti
Nalli, G. and Amendola, D. 2020. Chatbot per Moodle: un assistente virtuale per i corsi universitari ad alto numero di studenti. MoodleMoot Italia 2020. Online 26 - 28 Nov 2020 MediaTouch 2000. pp. 64-67
Application of machine learning to the learning analytics of the Moodle platform to create heterogeneous groups in on-line courses
Nalli, G., Mostarda, L., Perali, A., Pilati, S. and Amendola, A. 2019. Application of machine learning to the learning analytics of the Moodle platform to create heterogeneous groups in on-line courses. Italian Journal of Educational Research. p. 156–173.
Tool per la classificazione dei sentimenti degli studenti Implicati in moduli didattici universitari in modalità e-learning
Nalli, G., Amendola, D., Schettini, C. and Galassi, R. 2019. Tool per la classificazione dei sentimenti degli studenti Implicati in moduli didattici universitari in modalità e-learning. MoodleMoot Italia 2019. Verona, Italy 05 - 07 Dec 2019 MediaTouch 2000. pp. 29-32
Il Blended Learning per migliorare l’efficacia della didattica universitaria: il corso di Computer Ethics
Amendola, D., Nalli, G. and De Vivo, M. 2017. Il Blended Learning per migliorare l’efficacia della didattica universitaria: il corso di Computer Ethics. EMEMITALIA 2017. Bolzano, Italy 30 Aug - 01 Sep 2017