Machine Learning model for student drop-out prediction based on student engagement

Conference paper


Brezočnik, L., Nalli, G., De Leone, R., Val, S., Podgorelec, V. and Karakatič, S. 2023. Machine Learning model for student drop-out prediction based on student engagement. Karabegovic, I., Kovačević, A. and Mandzuka, S. (ed.) 9th International Conference on New Technologies, Development and Application. Sarajevo, Bosnia and Herzegovina 22 - 24 Jun 2023 Cham Springer. pp. 486–496 https://doi.org/10.1007/978-3-031-31066-9_54
TypeConference paper
TitleMachine Learning model for student drop-out prediction based on student engagement
AuthorsBrezočnik, L., Nalli, G., De Leone, R., Val, S., Podgorelec, V. and Karakatič, S.
Abstract

Nowadays, the issue of student drop-out is addressed not only through the prism of pedagogy, but also by technological practices. In this paper, we demonstrate how a student drop-out could be predicted through a student’s performance using different Machine Learning techniques, i.e., supervised learning and unsupervised learning. The results show that various types of student engagement are essential factors in predicting drop-out and the final ECTS points achievements.

Sustainable Development Goals4 Quality education
Middlesex University ThemeCreativity, Culture & Enterprise
Conference9th International Conference on New Technologies, Development and Application
Page range486–496
Proceedings TitleNew Technologies, Development and Application VI: Volume 1
SeriesLecture Notes in Networks and Systems
EditorsKarabegovic, I., Kovačević, A. and Mandzuka, S.
ISSN2367-3370
Electronic2367-3389
ISBN
Paperback9783031310652
Electronic9783031310669
PublisherSpringer
Place of publicationCham
Publication dates
Online20 May 2023
Print20 May 2023
Publication process dates
Accepted2023
Deposited14 Jun 2024
Output statusPublished
Accepted author manuscript
File Access Level
Open
Copyright Statement

This version of the paper has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-ma...), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-31066-9_54

Digital Object Identifier (DOI)https://doi.org/10.1007/978-3-031-31066-9_54
Web address (URL) of conference proceedingshttps://doi.org/10.1007/978-3-031-31066-9
Permalink -

https://repository.mdx.ac.uk/item/wx656

Download files


Accepted author manuscript
  • 36
    total views
  • 25
    total downloads
  • 1
    views this month
  • 2
    downloads this month

Export as

Related outputs

Online application for the early detection of students at risk of failing through Artificial Intelligence
Nalli, G., Marconi, A., Karakatič, S., Brezočnik, L., Montagna, A., Amendola, D. and De Leone, R. 2024. Online application for the early detection of students at risk of failing through Artificial Intelligence. Minerva, T. and De Santis, A. (ed.) 2023 Italian Symposium on Digital Education. Reggio Emilia, Italy 13 - 15 Sep 2023 Pearson. pp. 56-62
Blockchain in e-learning platform to enhance trustworthy and sharing of micro-credentials
Bigiotti, A., Bottoni, M. and Nalli, G. 2024. Blockchain in e-learning platform to enhance trustworthy and sharing of micro-credentials. 36th International Conference on Advanced Information Systems Engineering Workshops. Limassol, Cyprus 03 - 07 Jun 2024 Cham, Switzerland. Springer. https://doi.org/10.1007/978-3-031-61003-5_1
Hybrid educational environments – using IoT to detect emotion changes during student interactions
Nalli, G., Dafoulas, G., Tsiakara, A., Langari, B., Mistry, K. and Tahmasebi Aria, F. 2023. Hybrid educational environments – using IoT to detect emotion changes during student interactions. Interaction Design and Architecture(s). 58 (1), pp. 39-52. https://doi.org/10.55612/s-5002-058-001
Online tutoring system for programming courses to improve exam pass rate
Nalli, G., Culmone, R., Perali, A. and Amendola, D. 2023. Online tutoring system for programming courses to improve exam pass rate. Journal of E-Learning and Knowledge Society. 19 (1), pp. 27-35. https://doi.org/10.20368/1971-8829/1135704
Comparison of the effectiveness and performance of student workgroups in online wiki activities with and without AI
Nalli, G. and Smith, S. 2023. Comparison of the effectiveness and performance of student workgroups in online wiki activities with and without AI. 4th International Electronic Conference on Applied Sciences. Online 27 Oct - 10 Nov 2023 MDPI. https://doi.org/10.3390/ASEC2023-16273
Machine-learning-based software to group heterogeneous students for online peer assessment activities
Amendola, D., Nalli, G. and Miceli, C. 2023. Machine-learning-based software to group heterogeneous students for online peer assessment activities. Fulantelli, G., Burgos, D., Casalino, G., Cimitile, M., Lo Bosco, G. and Taibi, D. (ed.) 4th International Conference on Higher Education Learning Methodologies and Technologies Online. Palermo, Italy 21 - 23 Sep 2022 Cham Springer. https://doi.org/10.1007/978-3-031-29800-4_2
Artificial Intelligence to improve learning outcomes through online collaborative activities
Nalli, G., Amendola, D. and Smith, S. 2022. Artificial Intelligence to improve learning outcomes through online collaborative activities. Fotaris, P. and Blake, A. (ed.) 21st European Conference on e-Learning. Brighton, UK 27 - 28 Oct 2022 Academic Conferences International Limited (ACI). pp. 475-479 https://doi.org/10.34190/ecel.21.1.661
Comparative analysis of clustering algorithms and moodle plugin for creation of student heterogeneous groups in online university courses
Nalli, G., Amendola, D., Perali, A. and Mostarda, L. 2021. Comparative analysis of clustering algorithms and moodle plugin for creation of student heterogeneous groups in online university courses. Applied Sciences. 11. https://doi.org/10.3390/app11135800
Chatbot per Moodle: un assistente virtuale per i corsi universitari ad alto numero di studenti
Nalli, G. and Amendola, D. 2020. Chatbot per Moodle: un assistente virtuale per i corsi universitari ad alto numero di studenti. MoodleMoot Italia 2020. Online 26 - 28 Nov 2020 MediaTouch 2000. pp. 64-67
Application of machine learning to the learning analytics of the Moodle platform to create heterogeneous groups in on-line courses
Nalli, G., Mostarda, L., Perali, A., Pilati, S. and Amendola, A. 2019. Application of machine learning to the learning analytics of the Moodle platform to create heterogeneous groups in on-line courses. Italian Journal of Educational Research. p. 156–173.
Tool per la classificazione dei sentimenti degli studenti Implicati in moduli didattici universitari in modalità e-learning
Nalli, G., Amendola, D., Schettini, C. and Galassi, R. 2019. Tool per la classificazione dei sentimenti degli studenti Implicati in moduli didattici universitari in modalità e-learning. MoodleMoot Italia 2019. Verona, Italy 05 - 07 Dec 2019 MediaTouch 2000. pp. 29-32
Il Blended Learning per migliorare l’efficacia della didattica universitaria: il corso di Computer Ethics
Amendola, D., Nalli, G. and De Vivo, M. 2017. Il Blended Learning per migliorare l’efficacia della didattica universitaria: il corso di Computer Ethics. EMEMITALIA 2017. Bolzano, Italy 30 Aug - 01 Sep 2017