Online tutoring system for programming courses to improve exam pass rate

Article


Nalli, G., Culmone, R., Perali, A. and Amendola, D. 2023. Online tutoring system for programming courses to improve exam pass rate. Journal of E-Learning and Knowledge Society. 19 (1), pp. 27-35. https://doi.org/10.20368/1971-8829/1135704
TypeArticle
TitleOnline tutoring system for programming courses to improve exam pass rate
AuthorsNalli, G., Culmone, R., Perali, A. and Amendola, D.
Abstract

University students enrolled in the first year of the Computer Science degree may have problems approaching programming, negatively affecting their study during the course. Tutoring programming projects are very important in helping students with difficulty in learning by providing the right approach to study, improving their knowledge and skills in computing. The aim of this work is to realize a new Java Programming tutoring online course that allows students to have an effective online tool to achieve the learning goals of the course and this will enhance the programming exam pass rate. The course we have designed consists of tools to help students with video tutorials, self-assessment quizzes, code evaluations and exercises to solve using an online Java editor. Because the Moodle platform lacks tools to check the quality of the code syntax, a new software was created. It performs a syntax analysis of the Java code and, as a tutor, automatically provides feedbacks and tips to the students to improve the quality. For each online tool the immediate feedback technique is used to amplify students' engagement. A Clustering Machine Learning technique is performed to identify different students' behaviors. A correlation between them and the final performance showed the most influential features of the completed activities. Quantitative analysis highlighted the effectiveness of the tutoring system and the online course designed in this work to enhance the final exam pass rate. At the end, students filled a questionnaire to report their perception and satisfaction about the course.

KeywordsTutoring; Feedback; Java Programming; Moodle; Machine Learning
Sustainable Development Goals4 Quality education
Middlesex University ThemeCreativity, Culture & Enterprise
PublisherItalian e-Learning Association
JournalJournal of E-Learning and Knowledge Society
ISSN1826-6223
Electronic1971-8829
Publication dates
Online27 Apr 2023
Print30 Apr 2023
Publication process dates
Submitted21 Jun 2022
Accepted24 Apr 2023
Deposited14 Jun 2024
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

PDF made available according to license information on the publisher's website at https://doi.org/10.20368/1971-8829/1135704.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Digital Object Identifier (DOI)https://doi.org/10.20368/1971-8829/1135704
Permalink -

https://repository.mdx.ac.uk/item/wx658

Download files

  • 34
    total views
  • 9
    total downloads
  • 2
    views this month
  • 1
    downloads this month

Export as

Related outputs

Online application for the early detection of students at risk of failing through Artificial Intelligence
Nalli, G., Marconi, A., Karakatič, S., Brezočnik, L., Montagna, A., Amendola, D. and De Leone, R. 2024. Online application for the early detection of students at risk of failing through Artificial Intelligence. Minerva, T. and De Santis, A. (ed.) 2023 Italian Symposium on Digital Education. Reggio Emilia, Italy 13 - 15 Sep 2023 Pearson. pp. 56-62
Blockchain in e-learning platform to enhance trustworthy and sharing of micro-credentials
Bigiotti, A., Bottoni, M. and Nalli, G. 2024. Blockchain in e-learning platform to enhance trustworthy and sharing of micro-credentials. 36th International Conference on Advanced Information Systems Engineering Workshops. Limassol, Cyprus 03 - 07 Jun 2024 Cham, Switzerland. Springer. https://doi.org/10.1007/978-3-031-61003-5_1
Hybrid educational environments – using IoT to detect emotion changes during student interactions
Nalli, G., Dafoulas, G., Tsiakara, A., Langari, B., Mistry, K. and Tahmasebi Aria, F. 2023. Hybrid educational environments – using IoT to detect emotion changes during student interactions. Interaction Design and Architecture(s). 58 (1), pp. 39-52. https://doi.org/10.55612/s-5002-058-001
Machine Learning model for student drop-out prediction based on student engagement
Brezočnik, L., Nalli, G., De Leone, R., Val, S., Podgorelec, V. and Karakatič, S. 2023. Machine Learning model for student drop-out prediction based on student engagement. Karabegovic, I., Kovačević, A. and Mandzuka, S. (ed.) 9th International Conference on New Technologies, Development and Application. Sarajevo, Bosnia and Herzegovina 22 - 24 Jun 2023 Cham Springer. pp. 486–496 https://doi.org/10.1007/978-3-031-31066-9_54
Comparison of the effectiveness and performance of student workgroups in online wiki activities with and without AI
Nalli, G. and Smith, S. 2023. Comparison of the effectiveness and performance of student workgroups in online wiki activities with and without AI. 4th International Electronic Conference on Applied Sciences. Online 27 Oct - 10 Nov 2023 MDPI. https://doi.org/10.3390/ASEC2023-16273
Machine-learning-based software to group heterogeneous students for online peer assessment activities
Amendola, D., Nalli, G. and Miceli, C. 2023. Machine-learning-based software to group heterogeneous students for online peer assessment activities. Fulantelli, G., Burgos, D., Casalino, G., Cimitile, M., Lo Bosco, G. and Taibi, D. (ed.) 4th International Conference on Higher Education Learning Methodologies and Technologies Online. Palermo, Italy 21 - 23 Sep 2022 Cham Springer. https://doi.org/10.1007/978-3-031-29800-4_2
Artificial Intelligence to improve learning outcomes through online collaborative activities
Nalli, G., Amendola, D. and Smith, S. 2022. Artificial Intelligence to improve learning outcomes through online collaborative activities. Fotaris, P. and Blake, A. (ed.) 21st European Conference on e-Learning. Brighton, UK 27 - 28 Oct 2022 Academic Conferences International Limited (ACI). pp. 475-479 https://doi.org/10.34190/ecel.21.1.661
Comparative analysis of clustering algorithms and moodle plugin for creation of student heterogeneous groups in online university courses
Nalli, G., Amendola, D., Perali, A. and Mostarda, L. 2021. Comparative analysis of clustering algorithms and moodle plugin for creation of student heterogeneous groups in online university courses. Applied Sciences. 11. https://doi.org/10.3390/app11135800
Chatbot per Moodle: un assistente virtuale per i corsi universitari ad alto numero di studenti
Nalli, G. and Amendola, D. 2020. Chatbot per Moodle: un assistente virtuale per i corsi universitari ad alto numero di studenti. MoodleMoot Italia 2020. Online 26 - 28 Nov 2020 MediaTouch 2000. pp. 64-67
Application of machine learning to the learning analytics of the Moodle platform to create heterogeneous groups in on-line courses
Nalli, G., Mostarda, L., Perali, A., Pilati, S. and Amendola, A. 2019. Application of machine learning to the learning analytics of the Moodle platform to create heterogeneous groups in on-line courses. Italian Journal of Educational Research. p. 156–173.
Tool per la classificazione dei sentimenti degli studenti Implicati in moduli didattici universitari in modalità e-learning
Nalli, G., Amendola, D., Schettini, C. and Galassi, R. 2019. Tool per la classificazione dei sentimenti degli studenti Implicati in moduli didattici universitari in modalità e-learning. MoodleMoot Italia 2019. Verona, Italy 05 - 07 Dec 2019 MediaTouch 2000. pp. 29-32
Il Blended Learning per migliorare l’efficacia della didattica universitaria: il corso di Computer Ethics
Amendola, D., Nalli, G. and De Vivo, M. 2017. Il Blended Learning per migliorare l’efficacia della didattica universitaria: il corso di Computer Ethics. EMEMITALIA 2017. Bolzano, Italy 30 Aug - 01 Sep 2017