Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics

Article


Cui, J., Yetgin, H., Liu, D., Zhang, J., Ng, S.X. and Hanzo, L. 2021. Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics. IEEE Open Journal of Vehicular Technology. 2, pp. 346-364. https://doi.org/10.1109/OJVT.2021.3095467
TypeArticle
TitleTwin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics
AuthorsCui, J., Yetgin, H., Liu, D., Zhang, J., Ng, S.X. and Hanzo, L.
Abstract

Integrated ground-air-space (IGAS) networks intrinsically amalgamate terrestrial and non-terrestrial communication techniques in support of universal connectivity across the globe. Multi-hop routing over the IGAS networks has the potential to provide long-distance highly directional connections in the sky. For meeting the latency and reliability requirements of in-flight connectivity, we formulate a multi-objective multi-hop routing problem in aeronautical ad hoc networks (AANETs) for concurrently optimizing multiple end-to-end performance metrics in terms of the total delay and the throughput. In contrast to single-objective optimization problems that may have a unique optimal solution, the problem formulated is a multi-objective combinatorial optimization problem (MOCOP), which generally has a set of trade-off solutions, called the Pareto optimal set. Due to the discrete structure of the MOCOP formulated, finding the Pareto optimal set becomes excessively complex for large-scale networks. Therefore, we employ a multi-objective evolutionary algorithm (MOEA), namely the classic NSGA-II for generating an approximation of the Pareto optimal set. Explicitly, with the intrinsic parallelism of MOEAs, the MOEA employed starts with a set of candidate solutions for creating and reproducing new solutions via genetic operators. Finally, we evaluate the MOCOP formulated for different networks generated both from simulated data as well as from real historical flight data. Our simulation results demonstrate that the utilized MOEA has the potential of finding the Pareto optimal solutions for small-scale networks, while also finding a set of high-performance nondominated solutions for large-scale networks.

KeywordsAeronautical ad hoc networks (AANETs); in-flight connectivity; multi-objective combinatorial optimization problem (MOCOP); multi-objective evolutionary algorithm (MOEA)
Sustainable Development Goals11 Sustainable cities and communities
Middlesex University ThemeSustainability
PublisherIEEE
JournalIEEE Open Journal of Vehicular Technology
ISSN
Electronic2644-1330
Publication dates
Online07 Jul 2021
Print11 Aug 2021
Publication process dates
Submitted12 Jun 2021
Accepted04 Jul 2021
Deposited05 Apr 2024
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Digital Object Identifier (DOI)https://doi.org/10.1109/OJVT.2021.3095467
Web of Science identifierWOS:000685212400001
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/11q2xy

  • 25
    total views
  • 12
    total downloads
  • 3
    views this month
  • 2
    downloads this month

Export as

Related outputs

Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation
Fortuna, C., Yetgin, H. and Mohorčič, M. 2023. Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation. IEEE Industrial Electronics Magazine. 17 (2), pp. 37-47. https://doi.org/10.1109/MIE.2022.3165673
HANNA: Human-friendly provisioning and configuration of smart devices
Fortuna, C., Yetgin, H., Ogrizek, L., Municio, E., Marquez-Barja, J.M. and Mohorcic, M. 2023. HANNA: Human-friendly provisioning and configuration of smart devices. Engineering Applications of Artificial Intelligence. 126 (Part A). https://doi.org/10.1016/j.engappai.2023.106745
Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks
Ivanescu, T., Yetgin, H., Merrett, G.V. and El-Hajjar, M. 2022. Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks. IEEE Access. 10, pp. 119956-119969. https://doi.org/10.1109/access.2022.3221446
Machine learning for wireless link quality estimation: A survey
Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2021. Machine learning for wireless link quality estimation: A survey. IEEE Communications Surveys and Tutorials. 23 (2), pp. 696-728. https://doi.org/10.1109/COMST.2021.3053615
Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region
Cui, J., Liu, D., Zhang, J., Yetgin, H., Ng, S.X., Maunder, R. and Hanzo, L. 2021. Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region. IEEE Open Journal of Vehicular Technology. 2, pp. 310-320. https://doi.org/10.1109/OJVT.2021.3089543
Time-to-provision evaluation of IoT devices using automated zero-touch provisioning
Boskov, I., Yetgin, H., Vučnik, M., Fortuna, C. and Mohorčič, M. 2020. Time-to-provision evaluation of IoT devices using automated zero-touch provisioning. 2020 IEEE Global Communications Conference. Taipei, Taiwan 07 - 11 Dec 2020 IEEE. https://doi.org/10.1109/GLOBECOM42002.2020.9348119
On designing a machine learning based wireless link quality classifier
Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2020. On designing a machine learning based wireless link quality classifier. IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. London, UK 31 Aug - 03 Sep 2020 IEEE. https://doi.org/10.1109/PIMRC48278.2020.9217171
Security, usability, and biometric authentication scheme for electronic voting using multiple keys
Ahmad, M., Rehman, A.U., Ayub, N., Alshehri, MD., Khan, M.A., Hameed, A. and Yetgin, H. 2020. Security, usability, and biometric authentication scheme for electronic voting using multiple keys. International Journal of Distributed Sensor Networks. 16 (7). https://doi.org/10.1177/1550147720944025
Learning to detect anomalous wireless links in IoT networks
Cerar, G., Yetgin, H., Bertalanic, B. and Fortuna, C. 2020. Learning to detect anomalous wireless links in IoT networks. IEEE Access. 8, pp. 212130-212155. https://doi.org/10.1109/ACCESS.2020.3039333
Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform
Kuru, K., Ansell, D., Khan, W. and Yetgin, H. 2019. Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform. IEEE Access. 7, pp. 15804-15831. https://doi.org/10.1109/ACCESS.2019.2892716
Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE)
Kuru, K. and Yetgin, H. 2019. Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE). IEEE Access. 7, pp. 41395-41415. https://doi.org/10.1109/ACCESS.2019.2907809
Whitelisting in RFDMA networks
Šolc, T., Yetgin, H., Gale, T., Mohorčič, M. and Fortuna, C. 2019. Whitelisting in RFDMA networks. IEEE Access. 7, pp. 159284-159299. https://doi.org/10.1109/ACCESS.2019.2950754
A survey of network lifetime maximization techniques in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2017. A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials. 19 (2), pp. 828-854. https://doi.org/10.1109/COMST.2017.2650979
Network-lifetime maximization of wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Network-lifetime maximization of wireless sensor networks. IEEE Access. 3, pp. 2191-2226. https://doi.org/10.1109/ACCESS.2015.2493779
Cross-layer network lifetime maximization in interference-limited WSNs
Yetgin, H,, Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Cross-layer network lifetime maximization in interference-limited WSNs. IEEE Transactions on Vehicular Technology. 64 (8), pp. 3795-3803. https://doi.org/10.1109/TVT.2014.2360361
Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2014. Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks. IET Wireless Sensor Systems. 4 (4), pp. 176-182. https://doi.org/10.1049/iet-wss.2014.0049
Multi-objective routing optimization using evolutionary algorithms
Yetgin, H., Cheung, K.T.K. and Hanzo, L. 2012. Multi-objective routing optimization using evolutionary algorithms. 2012 IEEE Wireless Communications and Networking Conference. Paris, France 01 - 04 Apr 2012 IEEE. pp. 3030-3034 https://doi.org/10.1109/WCNC.2012.6214324