Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform

Article


Kuru, K., Ansell, D., Khan, W. and Yetgin, H. 2019. Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform. IEEE Access. 7, pp. 15804-15831. https://doi.org/10.1109/ACCESS.2019.2892716
TypeArticle
TitleAnalysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform
AuthorsKuru, K., Ansell, D., Khan, W. and Yetgin, H.
Abstract

Deploying unmanned aerial vehicle (UAV) swarms in delivery systems are still in its infancy with regard to the technology, safety, and aviation rules and regulations. Optimal use of UAVs in dynamic environments is important in many aspects, e.g., increasing efficacy and reducing the air traffic, resulting in a safer environment, and it requires new techniques and robust approaches based on the capabilities of UAVs and constraints. This paper analyzes several delivery schemes within a platform, such as delivery with and without using air highways and delivery using a hybrid scheme along with several delivery methods (i.e., optimal, premium, and first-in first-out) to explore the use of UAV swarms as part of the logistics operations. In this platform, a dimension reduction technique, “dynamic multiple assignments in multi-dimensional space,” and several other new techniques along with Hungarian and cross-entropy Monte Carlo techniques are forged together to assign tasks and plan 3D routes dynamically. This particular approach is performed in such a way that UAV swarms in several warehouses are deployed optimally given the delivery scheme, method, and constraints. Several scenarios are tested on the simulator using small and big data sets. The results show that the distribution and the characteristics of data sets and constraints affect the decision on choosing the optimal delivery scheme and the method. The findings are expected to guide the aviation authorities in their decisions before dictating rules and regulations regarding effective, efficient, and safe use of UAVs. Furthermore, the companies that produce UAVs are going to take the demonstrated results into account for their functional design of UAVs along with other companies that aim to deliver their products using UAVs. Additionally, private industries, logistics operators, and municipalities are expected to benefit from the potential adoption of the simulator in strategic decisions before embarking on the practical implementation of UAV delivery systems.

KeywordsUnmanned aerial vehicle swarms; UAV delivery; logistics; cross-entropy Monte-Carlo; Hungarian route optimization; simulation
Sustainable Development Goals11 Sustainable cities and communities
Middlesex University ThemeSustainability
PublisherIEEE
JournalIEEE Access
ISSN
Electronic2169-3536
Publication dates
Online13 Jan 2019
Print12 Feb 2019
Publication process dates
Submitted17 Dec 2018
Accepted02 Jan 2019
Deposited08 Apr 2024
Output statusPublished
Digital Object Identifier (DOI)https://doi.org/10.1109/ACCESS.2019.2892716
Web of Science identifierWOS:000458869700001
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/11wq3v

  • 28
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation
Fortuna, C., Yetgin, H. and Mohorčič, M. 2023. Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation. IEEE Industrial Electronics Magazine. 17 (2), pp. 37-47. https://doi.org/10.1109/MIE.2022.3165673
HANNA: Human-friendly provisioning and configuration of smart devices
Fortuna, C., Yetgin, H., Ogrizek, L., Municio, E., Marquez-Barja, J.M. and Mohorcic, M. 2023. HANNA: Human-friendly provisioning and configuration of smart devices. Engineering Applications of Artificial Intelligence. 126 (Part A). https://doi.org/10.1016/j.engappai.2023.106745
Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks
Ivanescu, T., Yetgin, H., Merrett, G.V. and El-Hajjar, M. 2022. Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks. IEEE Access. 10, pp. 119956-119969. https://doi.org/10.1109/access.2022.3221446
Machine learning for wireless link quality estimation: A survey
Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2021. Machine learning for wireless link quality estimation: A survey. IEEE Communications Surveys and Tutorials. 23 (2), pp. 696-728. https://doi.org/10.1109/COMST.2021.3053615
Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics
Cui, J., Yetgin, H., Liu, D., Zhang, J., Ng, S.X. and Hanzo, L. 2021. Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics. IEEE Open Journal of Vehicular Technology. 2, pp. 346-364. https://doi.org/10.1109/OJVT.2021.3095467
Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region
Cui, J., Liu, D., Zhang, J., Yetgin, H., Ng, S.X., Maunder, R. and Hanzo, L. 2021. Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region. IEEE Open Journal of Vehicular Technology. 2, pp. 310-320. https://doi.org/10.1109/OJVT.2021.3089543
Time-to-provision evaluation of IoT devices using automated zero-touch provisioning
Boskov, I., Yetgin, H., Vučnik, M., Fortuna, C. and Mohorčič, M. 2020. Time-to-provision evaluation of IoT devices using automated zero-touch provisioning. 2020 IEEE Global Communications Conference. Taipei, Taiwan 07 - 11 Dec 2020 IEEE. https://doi.org/10.1109/GLOBECOM42002.2020.9348119
On designing a machine learning based wireless link quality classifier
Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2020. On designing a machine learning based wireless link quality classifier. IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. London, UK 31 Aug - 03 Sep 2020 IEEE. https://doi.org/10.1109/PIMRC48278.2020.9217171
Security, usability, and biometric authentication scheme for electronic voting using multiple keys
Ahmad, M., Rehman, A.U., Ayub, N., Alshehri, MD., Khan, M.A., Hameed, A. and Yetgin, H. 2020. Security, usability, and biometric authentication scheme for electronic voting using multiple keys. International Journal of Distributed Sensor Networks. 16 (7). https://doi.org/10.1177/1550147720944025
Learning to detect anomalous wireless links in IoT networks
Cerar, G., Yetgin, H., Bertalanic, B. and Fortuna, C. 2020. Learning to detect anomalous wireless links in IoT networks. IEEE Access. 8, pp. 212130-212155. https://doi.org/10.1109/ACCESS.2020.3039333
Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE)
Kuru, K. and Yetgin, H. 2019. Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE). IEEE Access. 7, pp. 41395-41415. https://doi.org/10.1109/ACCESS.2019.2907809
Whitelisting in RFDMA networks
Šolc, T., Yetgin, H., Gale, T., Mohorčič, M. and Fortuna, C. 2019. Whitelisting in RFDMA networks. IEEE Access. 7, pp. 159284-159299. https://doi.org/10.1109/ACCESS.2019.2950754
A survey of network lifetime maximization techniques in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2017. A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials. 19 (2), pp. 828-854. https://doi.org/10.1109/COMST.2017.2650979
Network-lifetime maximization of wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Network-lifetime maximization of wireless sensor networks. IEEE Access. 3, pp. 2191-2226. https://doi.org/10.1109/ACCESS.2015.2493779
Cross-layer network lifetime maximization in interference-limited WSNs
Yetgin, H,, Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Cross-layer network lifetime maximization in interference-limited WSNs. IEEE Transactions on Vehicular Technology. 64 (8), pp. 3795-3803. https://doi.org/10.1109/TVT.2014.2360361
Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2014. Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks. IET Wireless Sensor Systems. 4 (4), pp. 176-182. https://doi.org/10.1049/iet-wss.2014.0049
Multi-objective routing optimization using evolutionary algorithms
Yetgin, H., Cheung, K.T.K. and Hanzo, L. 2012. Multi-objective routing optimization using evolutionary algorithms. 2012 IEEE Wireless Communications and Networking Conference. Paris, France 01 - 04 Apr 2012 IEEE. pp. 3030-3034 https://doi.org/10.1109/WCNC.2012.6214324