Machine learning for wireless link quality estimation: A survey

Article


Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2021. Machine learning for wireless link quality estimation: A survey. IEEE Communications Surveys and Tutorials. 23 (2), pp. 696-728. https://doi.org/10.1109/COMST.2021.3053615
TypeArticle
TitleMachine learning for wireless link quality estimation: A survey
AuthorsCerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C.
Abstract

Since the emergence of wireless communication networks, a plethora of research papers focus their attention on the quality aspects of wireless links. The analysis of the rich body of existing literature on link quality estimation using models developed from data traces indicates that the techniques used for modeling link quality estimation are becoming increasingly sophisticated. A number of recent estimators leverage Machine Learning (ML) techniques that require a sophisticated design and development process, each of which has a great potential to significantly affect the overall model performance. In this article, we provide a comprehensive survey on link quality estimators developed from empirical data and then focus on the subset that use ML algorithms. We analyze ML-based Link Quality Estimation (LQE) models from two perspectives using performance data. Firstly, we focus on how they address quality requirements that are important from the perspective of the applications they serve. Secondly, we analyze how they approach the standard design steps commonly used in the ML community. Having analyzed the scientific body of the survey, we review existing open source datasets suitable for LQE research. Finally, we round up our survey with the lessons learned and design guidelines for ML-based LQE development and dataset collection.

KeywordsWireless communication; Deep learning; Data models; Wireless networks; Analytical models; Physical layer; Tutorials; Link quality estimation; machine learning; data-driven model; reliability; reactivity; stability; computational cost; probing overhead; dataset preprocessing; feature selection; model development; wireless networks
Sustainable Development Goals9 Industry, innovation and infrastructure
Middlesex University ThemeSustainability
PublisherIEEE
JournalIEEE Communications Surveys and Tutorials
ISSN
Electronic1553-877X
Publication dates
Online22 Jan 2021
Print21 May 2021
Publication process dates
Submitted19 Jun 2020
Accepted16 Jan 2021
Deposited05 Apr 2024
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Digital Object Identifier (DOI)https://doi.org/10.1109/COMST.2021.3053615
Web of Science identifierWOS:000654905700003
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/11q2xz

Download files


Publisher's version
  • 40
    total views
  • 54
    total downloads
  • 1
    views this month
  • 5
    downloads this month

Export as

Related outputs

Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation
Fortuna, C., Yetgin, H. and Mohorčič, M. 2023. Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation. IEEE Industrial Electronics Magazine. 17 (2), pp. 37-47. https://doi.org/10.1109/MIE.2022.3165673
HANNA: Human-friendly provisioning and configuration of smart devices
Fortuna, C., Yetgin, H., Ogrizek, L., Municio, E., Marquez-Barja, J.M. and Mohorcic, M. 2023. HANNA: Human-friendly provisioning and configuration of smart devices. Engineering Applications of Artificial Intelligence. 126 (Part A). https://doi.org/10.1016/j.engappai.2023.106745
Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks
Ivanescu, T., Yetgin, H., Merrett, G.V. and El-Hajjar, M. 2022. Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks. IEEE Access. 10, pp. 119956-119969. https://doi.org/10.1109/access.2022.3221446
Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics
Cui, J., Yetgin, H., Liu, D., Zhang, J., Ng, S.X. and Hanzo, L. 2021. Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics. IEEE Open Journal of Vehicular Technology. 2, pp. 346-364. https://doi.org/10.1109/OJVT.2021.3095467
Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region
Cui, J., Liu, D., Zhang, J., Yetgin, H., Ng, S.X., Maunder, R. and Hanzo, L. 2021. Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region. IEEE Open Journal of Vehicular Technology. 2, pp. 310-320. https://doi.org/10.1109/OJVT.2021.3089543
Time-to-provision evaluation of IoT devices using automated zero-touch provisioning
Boskov, I., Yetgin, H., Vučnik, M., Fortuna, C. and Mohorčič, M. 2020. Time-to-provision evaluation of IoT devices using automated zero-touch provisioning. 2020 IEEE Global Communications Conference. Taipei, Taiwan 07 - 11 Dec 2020 IEEE. https://doi.org/10.1109/GLOBECOM42002.2020.9348119
On designing a machine learning based wireless link quality classifier
Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2020. On designing a machine learning based wireless link quality classifier. IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. London, UK 31 Aug - 03 Sep 2020 IEEE. https://doi.org/10.1109/PIMRC48278.2020.9217171
Security, usability, and biometric authentication scheme for electronic voting using multiple keys
Ahmad, M., Rehman, A.U., Ayub, N., Alshehri, MD., Khan, M.A., Hameed, A. and Yetgin, H. 2020. Security, usability, and biometric authentication scheme for electronic voting using multiple keys. International Journal of Distributed Sensor Networks. 16 (7). https://doi.org/10.1177/1550147720944025
Learning to detect anomalous wireless links in IoT networks
Cerar, G., Yetgin, H., Bertalanic, B. and Fortuna, C. 2020. Learning to detect anomalous wireless links in IoT networks. IEEE Access. 8, pp. 212130-212155. https://doi.org/10.1109/ACCESS.2020.3039333
Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform
Kuru, K., Ansell, D., Khan, W. and Yetgin, H. 2019. Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform. IEEE Access. 7, pp. 15804-15831. https://doi.org/10.1109/ACCESS.2019.2892716
Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE)
Kuru, K. and Yetgin, H. 2019. Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE). IEEE Access. 7, pp. 41395-41415. https://doi.org/10.1109/ACCESS.2019.2907809
Whitelisting in RFDMA networks
Šolc, T., Yetgin, H., Gale, T., Mohorčič, M. and Fortuna, C. 2019. Whitelisting in RFDMA networks. IEEE Access. 7, pp. 159284-159299. https://doi.org/10.1109/ACCESS.2019.2950754
A survey of network lifetime maximization techniques in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2017. A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials. 19 (2), pp. 828-854. https://doi.org/10.1109/COMST.2017.2650979
Network-lifetime maximization of wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Network-lifetime maximization of wireless sensor networks. IEEE Access. 3, pp. 2191-2226. https://doi.org/10.1109/ACCESS.2015.2493779
Cross-layer network lifetime maximization in interference-limited WSNs
Yetgin, H,, Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Cross-layer network lifetime maximization in interference-limited WSNs. IEEE Transactions on Vehicular Technology. 64 (8), pp. 3795-3803. https://doi.org/10.1109/TVT.2014.2360361
Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2014. Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks. IET Wireless Sensor Systems. 4 (4), pp. 176-182. https://doi.org/10.1049/iet-wss.2014.0049
Multi-objective routing optimization using evolutionary algorithms
Yetgin, H., Cheung, K.T.K. and Hanzo, L. 2012. Multi-objective routing optimization using evolutionary algorithms. 2012 IEEE Wireless Communications and Networking Conference. Paris, France 01 - 04 Apr 2012 IEEE. pp. 3030-3034 https://doi.org/10.1109/WCNC.2012.6214324