Security, usability, and biometric authentication scheme for electronic voting using multiple keys

Article


Ahmad, M., Rehman, A.U., Ayub, N., Alshehri, MD., Khan, M.A., Hameed, A. and Yetgin, H. 2020. Security, usability, and biometric authentication scheme for electronic voting using multiple keys. International Journal of Distributed Sensor Networks. 16 (7). https://doi.org/10.1177/1550147720944025
TypeArticle
TitleSecurity, usability, and biometric authentication scheme for electronic voting using multiple keys
AuthorsAhmad, M., Rehman, A.U., Ayub, N., Alshehri, MD., Khan, M.A., Hameed, A. and Yetgin, H.
Abstract

We propose electronic voting authentication scheme, which is a key management mechanism for electronic voting system intended to limit the number of attacks on a polling station and strengthen the security control. The motivation is to diversify security requirements of messages exchanged between polling stations. There are different types of messages exchanged between polling stations and each type of message has different security needs. A security mechanism developed on the basis of a single key is not enough to ensure the diverse security needs of voting network. In electronic voting authentication scheme, every polling station is responsible to support three different types of keys. These are global key, pairwise key, and individual key. The global keys are public keys shared with all polling stations in the voting network. The pairwise key can be used for communication with polling stations. Individual keys will be used for communication with the server. To ensure authentication of local broadcast, electronic voting authentication scheme uses one-way key chains in a well-organized way. The support of source authentication is a visible advantage of this scheme. We examine the authentication of electronic voting authentication scheme on numerous attack models. The measurement demonstrates that electronic voting authentication scheme is very operative in protecting against numerous elegant attacks such as wormhole attack, Sybil attack, and HELLO Flood attack. The proposed system is evaluated and the results demonstrate that the proposed system is practical and secure as compared to the direct recording electronic and manual systems.

KeywordsElectronic voting; security; authentication; attacks; key distribution; key management
Sustainable Development Goals11 Sustainable cities and communities
Middlesex University ThemeSustainability
PublisherSAGE Publications
JournalInternational Journal of Distributed Sensor Networks
ISSN1550-1329
Electronic1550-1477
Publication dates
PrintJul 2020
Online22 Jul 2020
Publication process dates
Submitted06 Jan 2020
Accepted22 Jun 2020
Deposited15 Apr 2024
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

© The Author(s) 2020.
Creative Commons License (CC BY 4.0)
This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Digital Object Identifier (DOI)https://doi.org/10.1177/1550147720944025
Web of Science identifierWOS:000614822500001
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/11z159

  • 33
    total views
  • 7
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation
Fortuna, C., Yetgin, H. and Mohorčič, M. 2023. Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation. IEEE Industrial Electronics Magazine. 17 (2), pp. 37-47. https://doi.org/10.1109/MIE.2022.3165673
HANNA: Human-friendly provisioning and configuration of smart devices
Fortuna, C., Yetgin, H., Ogrizek, L., Municio, E., Marquez-Barja, J.M. and Mohorcic, M. 2023. HANNA: Human-friendly provisioning and configuration of smart devices. Engineering Applications of Artificial Intelligence. 126 (Part A). https://doi.org/10.1016/j.engappai.2023.106745
Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks
Ivanescu, T., Yetgin, H., Merrett, G.V. and El-Hajjar, M. 2022. Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks. IEEE Access. 10, pp. 119956-119969. https://doi.org/10.1109/access.2022.3221446
Machine learning for wireless link quality estimation: A survey
Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2021. Machine learning for wireless link quality estimation: A survey. IEEE Communications Surveys and Tutorials. 23 (2), pp. 696-728. https://doi.org/10.1109/COMST.2021.3053615
Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics
Cui, J., Yetgin, H., Liu, D., Zhang, J., Ng, S.X. and Hanzo, L. 2021. Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics. IEEE Open Journal of Vehicular Technology. 2, pp. 346-364. https://doi.org/10.1109/OJVT.2021.3095467
Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region
Cui, J., Liu, D., Zhang, J., Yetgin, H., Ng, S.X., Maunder, R. and Hanzo, L. 2021. Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region. IEEE Open Journal of Vehicular Technology. 2, pp. 310-320. https://doi.org/10.1109/OJVT.2021.3089543
Time-to-provision evaluation of IoT devices using automated zero-touch provisioning
Boskov, I., Yetgin, H., Vučnik, M., Fortuna, C. and Mohorčič, M. 2020. Time-to-provision evaluation of IoT devices using automated zero-touch provisioning. 2020 IEEE Global Communications Conference. Taipei, Taiwan 07 - 11 Dec 2020 IEEE. https://doi.org/10.1109/GLOBECOM42002.2020.9348119
On designing a machine learning based wireless link quality classifier
Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2020. On designing a machine learning based wireless link quality classifier. IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. London, UK 31 Aug - 03 Sep 2020 IEEE. https://doi.org/10.1109/PIMRC48278.2020.9217171
Learning to detect anomalous wireless links in IoT networks
Cerar, G., Yetgin, H., Bertalanic, B. and Fortuna, C. 2020. Learning to detect anomalous wireless links in IoT networks. IEEE Access. 8, pp. 212130-212155. https://doi.org/10.1109/ACCESS.2020.3039333
Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform
Kuru, K., Ansell, D., Khan, W. and Yetgin, H. 2019. Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform. IEEE Access. 7, pp. 15804-15831. https://doi.org/10.1109/ACCESS.2019.2892716
Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE)
Kuru, K. and Yetgin, H. 2019. Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE). IEEE Access. 7, pp. 41395-41415. https://doi.org/10.1109/ACCESS.2019.2907809
Whitelisting in RFDMA networks
Šolc, T., Yetgin, H., Gale, T., Mohorčič, M. and Fortuna, C. 2019. Whitelisting in RFDMA networks. IEEE Access. 7, pp. 159284-159299. https://doi.org/10.1109/ACCESS.2019.2950754
A survey of network lifetime maximization techniques in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2017. A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials. 19 (2), pp. 828-854. https://doi.org/10.1109/COMST.2017.2650979
Network-lifetime maximization of wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Network-lifetime maximization of wireless sensor networks. IEEE Access. 3, pp. 2191-2226. https://doi.org/10.1109/ACCESS.2015.2493779
Cross-layer network lifetime maximization in interference-limited WSNs
Yetgin, H,, Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Cross-layer network lifetime maximization in interference-limited WSNs. IEEE Transactions on Vehicular Technology. 64 (8), pp. 3795-3803. https://doi.org/10.1109/TVT.2014.2360361
Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2014. Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks. IET Wireless Sensor Systems. 4 (4), pp. 176-182. https://doi.org/10.1049/iet-wss.2014.0049
Multi-objective routing optimization using evolutionary algorithms
Yetgin, H., Cheung, K.T.K. and Hanzo, L. 2012. Multi-objective routing optimization using evolutionary algorithms. 2012 IEEE Wireless Communications and Networking Conference. Paris, France 01 - 04 Apr 2012 IEEE. pp. 3030-3034 https://doi.org/10.1109/WCNC.2012.6214324