Whitelisting in RFDMA networks

Article


Šolc, T., Yetgin, H., Gale, T., Mohorčič, M. and Fortuna, C. 2019. Whitelisting in RFDMA networks. IEEE Access. 7, pp. 159284-159299. https://doi.org/10.1109/ACCESS.2019.2950754
TypeArticle
TitleWhitelisting in RFDMA networks
AuthorsŠolc, T., Yetgin, H., Gale, T., Mohorčič, M. and Fortuna, C.
Abstract

Uplink transmissions, within coexisting distinct sub-GHz technologies operating in the same unlicensed band, can be exposed to detrimental impact of the interference. In such scenarios, transmission scheduling becomes important for mitigating interference or minimizing the impact of the interference. For this purpose, we aim to whitelist relatively better channels in terms of their yielded packet reception ratio using our proposed channel quality metric that is based on the received signal-to-interference-plus-noise ratio. In this paper, we investigate the trade-offs of the channel whitelisting in random frequency division multiple access (RFDMA) networks in the presence of the cumulative intra- and inter-technology interferences. Our main findings indicate that, although channel whitelisting reduces the degree of freedom, and thus the overall capacity, it empowers a certain amount of devices to be served at a much lower received signal power, whereas this is infeasible for non-whitelisting scenarios at larger received signal power, which signifies the energy conservation ability of our proposed whitelisting method. It is experimentally demonstrated, on Sigfox, a particular type of RFDMA network, that non-whitelisting scenarios are not capable of supporting any devices at a received signal power below -118 dBm. Even for lower received signal power, we are able to reduce the required number of retransmissions at the same reception probability, which indeed indicates that the overall reliability of the network is improved.

KeywordsInterference; Whitelists; Time-frequency analysis; Uplink; Frequency conversion; Wireless communication; Aloha; inter-technology interference; Internet of things; RFDMA; whitelisting
Sustainable Development Goals9 Industry, innovation and infrastructure
Middlesex University ThemeSustainability
PublisherIEEE
JournalIEEE Access
ISSN
Electronic2169-3536
Publication dates
Online31 Oct 2019
Print13 Nov 2019
Publication process dates
Submitted18 Oct 2019
Accepted29 Oct 2019
Deposited05 Apr 2024
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

Digital Object Identifier (DOI)https://doi.org/10.1109/ACCESS.2019.2950754
Web of Science identifierWOS:000497167600038
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/11vwzq

Download files


Publisher's version
Whitelisting_in_RFDMA_Networks.pdf
License: CC BY 4.0
File access level: Open

  • 42
    total views
  • 17
    total downloads
  • 2
    views this month
  • 2
    downloads this month

Export as

Related outputs

Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation
Fortuna, C., Yetgin, H. and Mohorčič, M. 2023. Smart infrastructures: Artificial Intelligence-Enabled lifecycle automation. IEEE Industrial Electronics Magazine. 17 (2), pp. 37-47. https://doi.org/10.1109/MIE.2022.3165673
HANNA: Human-friendly provisioning and configuration of smart devices
Fortuna, C., Yetgin, H., Ogrizek, L., Municio, E., Marquez-Barja, J.M. and Mohorcic, M. 2023. HANNA: Human-friendly provisioning and configuration of smart devices. Engineering Applications of Artificial Intelligence. 126 (Part A). https://doi.org/10.1016/j.engappai.2023.106745
Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks
Ivanescu, T., Yetgin, H., Merrett, G.V. and El-Hajjar, M. 2022. Multi-source multi-destination hybrid infrastructure-aided traffic aware routing in V2V/I networks. IEEE Access. 10, pp. 119956-119969. https://doi.org/10.1109/access.2022.3221446
Machine learning for wireless link quality estimation: A survey
Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2021. Machine learning for wireless link quality estimation: A survey. IEEE Communications Surveys and Tutorials. 23 (2), pp. 696-728. https://doi.org/10.1109/COMST.2021.3053615
Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics
Cui, J., Yetgin, H., Liu, D., Zhang, J., Ng, S.X. and Hanzo, L. 2021. Twin-component near-pareto routing optimization for AANETs in the North-Atlantic Region relying on real flight statistics. IEEE Open Journal of Vehicular Technology. 2, pp. 346-364. https://doi.org/10.1109/OJVT.2021.3095467
Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region
Cui, J., Liu, D., Zhang, J., Yetgin, H., Ng, S.X., Maunder, R. and Hanzo, L. 2021. Minimum-delay routing for integrated aeronautical ad hoc networks relying on real flight data in the North-Atlantic Region. IEEE Open Journal of Vehicular Technology. 2, pp. 310-320. https://doi.org/10.1109/OJVT.2021.3089543
Time-to-provision evaluation of IoT devices using automated zero-touch provisioning
Boskov, I., Yetgin, H., Vučnik, M., Fortuna, C. and Mohorčič, M. 2020. Time-to-provision evaluation of IoT devices using automated zero-touch provisioning. 2020 IEEE Global Communications Conference. Taipei, Taiwan 07 - 11 Dec 2020 IEEE. https://doi.org/10.1109/GLOBECOM42002.2020.9348119
On designing a machine learning based wireless link quality classifier
Cerar, G., Yetgin, H., Mohorčič, M. and Fortuna, C. 2020. On designing a machine learning based wireless link quality classifier. IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. London, UK 31 Aug - 03 Sep 2020 IEEE. https://doi.org/10.1109/PIMRC48278.2020.9217171
Security, usability, and biometric authentication scheme for electronic voting using multiple keys
Ahmad, M., Rehman, A.U., Ayub, N., Alshehri, MD., Khan, M.A., Hameed, A. and Yetgin, H. 2020. Security, usability, and biometric authentication scheme for electronic voting using multiple keys. International Journal of Distributed Sensor Networks. 16 (7). https://doi.org/10.1177/1550147720944025
Learning to detect anomalous wireless links in IoT networks
Cerar, G., Yetgin, H., Bertalanic, B. and Fortuna, C. 2020. Learning to detect anomalous wireless links in IoT networks. IEEE Access. 8, pp. 212130-212155. https://doi.org/10.1109/ACCESS.2020.3039333
Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform
Kuru, K., Ansell, D., Khan, W. and Yetgin, H. 2019. Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform. IEEE Access. 7, pp. 15804-15831. https://doi.org/10.1109/ACCESS.2019.2892716
Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE)
Kuru, K. and Yetgin, H. 2019. Transformation to advanced mechatronics systems within new industrial revolution: a navel framework in Automation of Everything (AoE). IEEE Access. 7, pp. 41395-41415. https://doi.org/10.1109/ACCESS.2019.2907809
A survey of network lifetime maximization techniques in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2017. A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials. 19 (2), pp. 828-854. https://doi.org/10.1109/COMST.2017.2650979
Network-lifetime maximization of wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Network-lifetime maximization of wireless sensor networks. IEEE Access. 3, pp. 2191-2226. https://doi.org/10.1109/ACCESS.2015.2493779
Cross-layer network lifetime maximization in interference-limited WSNs
Yetgin, H,, Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2015. Cross-layer network lifetime maximization in interference-limited WSNs. IEEE Transactions on Vehicular Technology. 64 (8), pp. 3795-3803. https://doi.org/10.1109/TVT.2014.2360361
Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks
Yetgin, H., Cheung, K.T.K., El-Hajjar, M. and Hanzo, L. 2014. Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks. IET Wireless Sensor Systems. 4 (4), pp. 176-182. https://doi.org/10.1049/iet-wss.2014.0049
Multi-objective routing optimization using evolutionary algorithms
Yetgin, H., Cheung, K.T.K. and Hanzo, L. 2012. Multi-objective routing optimization using evolutionary algorithms. 2012 IEEE Wireless Communications and Networking Conference. Paris, France 01 - 04 Apr 2012 IEEE. pp. 3030-3034 https://doi.org/10.1109/WCNC.2012.6214324