Algorithms for balanced graph bi-partitioning

Conference item


Wu, J., Jiang, G., Zheng, L. and Zhou, S. 2014. Algorithms for balanced graph bi-partitioning. 2014 IEEEInternational Conference on High Performance Computing and Communications (HPCC). Paris, France 20 - 22 Aug 2014 Institute of Electrical and Electronics Engineers (IEEE). pp. 185-188 https://doi.org/10.1109/HPCC.2014.35
TitleAlgorithms for balanced graph bi-partitioning
AuthorsWu, J., Jiang, G., Zheng, L. and Zhou, S.
Abstract

Graph partitioning has been widely applied in cloud computing, data centers, virtual machine scheduling, hardware/software co-design, and VLSI circuit design, etc. The general graph partitioning problem is known to be NP-hard. This paper investigates how to partition the vertex set of an undirected weighted graph into two disjoint subsets, such that the total vertex-weights of the two subsets are nearly equal, and the total weight of the edges connecting the two subsets is minimized. A heuristic algorithm is proposed to initialize an approximate bipartition such that the total vertex-weight of each subset is close to that of the other. The proposed algorithm constructs a subset by selecting a group of neighboring vertices with the highest gain from the original graph for inclusion into the subset. A customized tabu search is proposed to further refine the initial partition, which minimizes the communication cost and keeps partition balanced. Experimental results show that the proposed algorithms outperform the state-of-the-art on the public benchmarks, with the improvement of up to 79% for certain cases.

Conference2014 IEEEInternational Conference on High Performance Computing and Communications (HPCC)
Page range185-188
Proceedings Title2014 IEEEInternational Conference on High Performance Computing and Communications (HPCC)
ISBN
Hardcover9781479961221
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Publication dates
Print2014
Publication process dates
Deposited18 Sep 2015
Accepted20 Aug 2014
Output statusPublished
Digital Object Identifier (DOI)https://doi.org/10.1109/HPCC.2014.35
LanguageEnglish
Book title2014 IEEE Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS),
Permalink -

https://repository.mdx.ac.uk/item/8546y

  • 19
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Development of OpenFlow Native Capabilities to optimize QoS
Breiki, M., Zhou, S. and Luo, Y. 2020. Development of OpenFlow Native Capabilities to optimize QoS. 2020 Seventh International Conference on Software Defined Systems (SDS). Paris, France 20 - 23 Apr 2020 IEEE. pp. 67-74 https://doi.org/10.1109/SDS49854.2020.9143890
Design and validation of a meter band rate in OpenFlow and OpenDaylight for optimizing QoS
Breiki, M., Zhou, S. and Luo, Y. 2020. Design and validation of a meter band rate in OpenFlow and OpenDaylight for optimizing QoS. Advances in Science, Technology and Engineering Systems Journal. 5 (2), pp. 35-43. https://doi.org/10.25046/aj050205
A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight
Al Breiki, M., Zhou, S. and Luo, Y. 2019. A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). Rabat, Morocco, Morocco 12 - 14 Apr 2019 IEEE. https://doi.org/10.1109/COMMNET.2019.8742360
Software systems for data-centric smart city applications
Chen, D., Wang, L. and Zhou, S. 2017. Software systems for data-centric smart city applications. Software: Practice and Experience. 47 (8), pp. 1043-1044. https://doi.org/10.1002/spe.2508
RA2: predicting simulation execution time for cloud-based design space explorations
Duong, T., Zhong, J., Cai, W., Li, Z. and Zhou, S. 2016. RA2: predicting simulation execution time for cloud-based design space explorations. 2016 IEEE/ACM 20th International Symposium on Distributed Simulation and Real Time Applications. London 21 - 23 Sep 2016 Institute of Electrical and Electronics Engineers (IEEE). pp. 120-127 https://doi.org/10.1109/DS-RT.2016.9
Modeling gap seeking behaviors for agent-based crowd simulation
Luo, L., Chai, C., Zhou, S. and Ma, J. 2016. Modeling gap seeking behaviors for agent-based crowd simulation. The 29th International Conference on Computer Animation and Social Agents. Geneva, Switzerland 23 - 25 May 2016 Association for Computing Machinery (ACM). pp. 37-43 https://doi.org/10.1145/2915926.2915944
ProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation
Luo, L., Chai, C., Ma, J., Zhou, S. and Cai, W. 2018. ProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation. Computer Graphics Forum. 37 (1), pp. 375-388. https://doi.org/10.1111/cgf.13303
Guide them through: an automatic crowd control framework using multi-objective genetic programming
Hu, N., Zhong, J., Zhou, J., Zhou, S., Cai, W. and Monterola, C. 2018. Guide them through: an automatic crowd control framework using multi-objective genetic programming. Applied Soft Computing. 66, pp. 90-103. https://doi.org/10.1016/j.asoc.2018.01.037
Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network
Zhao, Y. and Zhou, S. 2017. Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network. Sensors. 17 (3), pp. 1-20. https://doi.org/10.3390/s17030478
A review of interactive narrative systems and technologies: a training perspective
Luo, L., Cai, W., Zhou, S., Lees, M. and Yin, H. 2015. A review of interactive narrative systems and technologies: a training perspective. Simulation: Transactions of The Society for Modeling and Computer Simulation International. 91 (2), pp. 126-147. https://doi.org/10.1177/0037549714566722
Towards a data-driven approach to scenario generation for serious games
Luo, L., Yin, H., Cai, W., Lees, M., Othman, N. and Zhou, S. 2014. Towards a data-driven approach to scenario generation for serious games. Computer Animation and Virtual Worlds. 25 (3-4), pp. 393-402. https://doi.org/10.1002/cav.1588
Probabilistic classifiers with a generalized Gaussian scale mixture prior
Liu, G., Wu, J. and Zhou, S. 2013. Probabilistic classifiers with a generalized Gaussian scale mixture prior. Pattern Recognition. 46 (1), pp. 332-345. https://doi.org/10.1016/j.patcog.2012.07.016
Update scheduling for improving consistency in distributed virtual environments
Tang, X. and Zhou, S. 2010. Update scheduling for improving consistency in distributed virtual environments. IEEE Transactions on Parallel and Distributed Systems. 21 (6), pp. 765-777. https://doi.org/10.1109/TPDS.2009.113
Modeling and simulation of pedestrian behaviors in crowded places
Koh, W. and Zhou, S. 2011. Modeling and simulation of pedestrian behaviors in crowded places. ACM Transactions on Modeling and Computer Simulation. 21 (3), pp. 1-23. https://doi.org/10.1145/1921598.1921604
Interactivity-constrained server provisioning in large-scale distributed virtual environments
Duong, N., Nguyen, T., Zhou, S., Tang, X., Cai, W. and Ayani, R. 2012. Interactivity-constrained server provisioning in large-scale distributed virtual environments. IEEE Transactions on Parallel and Distributed Systems. 23 (2), pp. 304-312. https://doi.org/10.1109/TPDS.2011.107
Analysis of an efficient rule-based motion planning system for simulating human crowds
Xiong, M., Lees, M., Cai, W., Zhou, S. and Low, M. 2010. Analysis of an efficient rule-based motion planning system for simulating human crowds. The Visual Computer. 26 (5), pp. 367-383. https://doi.org/10.1007/s00371-010-0421-6
Fuzzy CMAC with incremental Bayesian Ying–Yang learning and dynamic rule construction
Shi, D., Nguyen, M., Zhou, S. and Yin, G. 2010. Fuzzy CMAC with incremental Bayesian Ying–Yang learning and dynamic rule construction. IEEE Transactions on Systems, Man and Cybernetics, Part B. 40 (2), pp. 548-552. https://doi.org/10.1109/TSMCB.2009.2030333