Modeling gap seeking behaviors for agent-based crowd simulation

Conference paper


Luo, L., Chai, C., Zhou, S. and Ma, J. 2016. Modeling gap seeking behaviors for agent-based crowd simulation. The 29th International Conference on Computer Animation and Social Agents. Geneva, Switzerland 23 - 25 May 2016 Association for Computing Machinery (ACM). pp. 37-43 https://doi.org/10.1145/2915926.2915944
TypeConference paper
TitleModeling gap seeking behaviors for agent-based crowd simulation
AuthorsLuo, L., Chai, C., Zhou, S. and Ma, J.
Abstract

Research on agent-based crowd simulation has gained tremendous momentum in recent years due to the increase of computing power. One key issue in this research area is to develop various behavioral models to capture the microscopic behaviors of individuals (i.e., agents) in a crowd. In this paper, we propose a novel behavior model for modeling the gap seeking behavior which can be frequently observed in real world scenarios where an individual in a crowd proactively seek for gaps in the crowd flow so as to minimize potential collision with other people. We propose a two-level modeling framework and introduce a gap seeking behavior model as a proactive conflict minimization maneuver at global navigation level. The model is integrated with the reactive collision avoidance model at local steering level. We evaluate our model by simulating a real world scenario. The results show that our model can generate more realistic crowd behaviors compared to the classical social-force model in the given scenario.

ConferenceThe 29th International Conference on Computer Animation and Social Agents
Page range37-43
ISBN
Hardcover9781450347457
PublisherAssociation for Computing Machinery (ACM)
Publication dates
Print23 May 2016
Publication process dates
Deposited28 Feb 2018
Accepted01 Feb 2016
Output statusPublished
Accepted author manuscript
Copyright Statement

© ACM 2016. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in CASA '16: Proceedings of the 29th International Conference on Computer Animation and Social Agents, http://dx.doi.org/10.1145/2915926.2915944

Digital Object Identifier (DOI)https://doi.org/10.1145/2915926.2915944
LanguageEnglish
Book titleCASA '16: Proceedings of the 29th International Conference on Computer Animation and Social Agents
Permalink -

https://repository.mdx.ac.uk/item/877x5

Download files


Accepted author manuscript
  • 20
    total views
  • 11
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Development of OpenFlow Native Capabilities to optimize QoS
Breiki, M., Zhou, S. and Luo, Y. 2020. Development of OpenFlow Native Capabilities to optimize QoS. 2020 Seventh International Conference on Software Defined Systems (SDS). Paris, France 20 - 23 Apr 2020 IEEE. pp. 67-74 https://doi.org/10.1109/SDS49854.2020.9143890
Design and validation of a meter band rate in OpenFlow and OpenDaylight for optimizing QoS
Breiki, M., Zhou, S. and Luo, Y. 2020. Design and validation of a meter band rate in OpenFlow and OpenDaylight for optimizing QoS. Advances in Science, Technology and Engineering Systems Journal. 5 (2), pp. 35-43. https://doi.org/10.25046/aj050205
A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight
Al Breiki, M., Zhou, S. and Luo, Y. 2019. A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). Rabat, Morocco, Morocco 12 - 14 Apr 2019 IEEE. https://doi.org/10.1109/COMMNET.2019.8742360
Software systems for data-centric smart city applications
Chen, D., Wang, L. and Zhou, S. 2017. Software systems for data-centric smart city applications. Software: Practice and Experience. 47 (8), pp. 1043-1044. https://doi.org/10.1002/spe.2508
RA2: predicting simulation execution time for cloud-based design space explorations
Duong, T., Zhong, J., Cai, W., Li, Z. and Zhou, S. 2016. RA2: predicting simulation execution time for cloud-based design space explorations. 2016 IEEE/ACM 20th International Symposium on Distributed Simulation and Real Time Applications. London 21 - 23 Sep 2016 Institute of Electrical and Electronics Engineers (IEEE). pp. 120-127 https://doi.org/10.1109/DS-RT.2016.9
ProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation
Luo, L., Chai, C., Ma, J., Zhou, S. and Cai, W. 2018. ProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation. Computer Graphics Forum. 37 (1), pp. 375-388. https://doi.org/10.1111/cgf.13303
Guide them through: an automatic crowd control framework using multi-objective genetic programming
Hu, N., Zhong, J., Zhou, J., Zhou, S., Cai, W. and Monterola, C. 2018. Guide them through: an automatic crowd control framework using multi-objective genetic programming. Applied Soft Computing. 66, pp. 90-103. https://doi.org/10.1016/j.asoc.2018.01.037
Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network
Zhao, Y. and Zhou, S. 2017. Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network. Sensors. 17 (3), pp. 1-20. https://doi.org/10.3390/s17030478
A review of interactive narrative systems and technologies: a training perspective
Luo, L., Cai, W., Zhou, S., Lees, M. and Yin, H. 2015. A review of interactive narrative systems and technologies: a training perspective. Simulation: Transactions of The Society for Modeling and Computer Simulation International. 91 (2), pp. 126-147. https://doi.org/10.1177/0037549714566722
Algorithms for balanced graph bi-partitioning
Wu, J., Jiang, G., Zheng, L. and Zhou, S. 2014. Algorithms for balanced graph bi-partitioning. 2014 IEEEInternational Conference on High Performance Computing and Communications (HPCC). Paris, France 20 - 22 Aug 2014 Institute of Electrical and Electronics Engineers (IEEE). pp. 185-188 https://doi.org/10.1109/HPCC.2014.35
Towards a data-driven approach to scenario generation for serious games
Luo, L., Yin, H., Cai, W., Lees, M., Othman, N. and Zhou, S. 2014. Towards a data-driven approach to scenario generation for serious games. Computer Animation and Virtual Worlds. 25 (3-4), pp. 393-402. https://doi.org/10.1002/cav.1588
Probabilistic classifiers with a generalized Gaussian scale mixture prior
Liu, G., Wu, J. and Zhou, S. 2013. Probabilistic classifiers with a generalized Gaussian scale mixture prior. Pattern Recognition. 46 (1), pp. 332-345. https://doi.org/10.1016/j.patcog.2012.07.016
Update scheduling for improving consistency in distributed virtual environments
Tang, X. and Zhou, S. 2010. Update scheduling for improving consistency in distributed virtual environments. IEEE Transactions on Parallel and Distributed Systems. 21 (6), pp. 765-777. https://doi.org/10.1109/TPDS.2009.113
Modeling and simulation of pedestrian behaviors in crowded places
Koh, W. and Zhou, S. 2011. Modeling and simulation of pedestrian behaviors in crowded places. ACM Transactions on Modeling and Computer Simulation. 21 (3), pp. 1-23. https://doi.org/10.1145/1921598.1921604
Interactivity-constrained server provisioning in large-scale distributed virtual environments
Duong, N., Nguyen, T., Zhou, S., Tang, X., Cai, W. and Ayani, R. 2012. Interactivity-constrained server provisioning in large-scale distributed virtual environments. IEEE Transactions on Parallel and Distributed Systems. 23 (2), pp. 304-312. https://doi.org/10.1109/TPDS.2011.107
Analysis of an efficient rule-based motion planning system for simulating human crowds
Xiong, M., Lees, M., Cai, W., Zhou, S. and Low, M. 2010. Analysis of an efficient rule-based motion planning system for simulating human crowds. The Visual Computer. 26 (5), pp. 367-383. https://doi.org/10.1007/s00371-010-0421-6
Fuzzy CMAC with incremental Bayesian Ying–Yang learning and dynamic rule construction
Shi, D., Nguyen, M., Zhou, S. and Yin, G. 2010. Fuzzy CMAC with incremental Bayesian Ying–Yang learning and dynamic rule construction. IEEE Transactions on Systems, Man and Cybernetics, Part B. 40 (2), pp. 548-552. https://doi.org/10.1109/TSMCB.2009.2030333