ProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation

Article


Luo, L., Chai, C., Ma, J., Zhou, S. and Cai, W. 2018. ProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation. Computer Graphics Forum. 37 (1), pp. 375-388. https://doi.org/10.1111/cgf.13303
TypeArticle
TitleProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation
AuthorsLuo, L., Chai, C., Ma, J., Zhou, S. and Cai, W.
Abstract

How to realistically model an agent's steering behavior is a critical issue in agent-based crowd simulation. In this work, we investigate some proactive steering strategies for agents to minimize potential collisions. To this end, a behavior-based modeling framework is first introduced to model the process of how humans select and execute a proactive steering strategies in crowded situations and execute the corresponding behavior accordingly. We then propose behavior models for two inter-related proactive steering behaviors, namely gap seeking and following. These behaviors can be frequently observed in real-life scenarios, and they can easily affect overall crowd dynamics. We validate our work by evaluating the simulation results of our model with the real-world data and comparing the performance of our model with that of another state-of-the-art crowd model. The results show that the performance of our model is better or at least comparable to the compared model in terms of the realism at both individual and crowd level.

PublisherWiley
JournalComputer Graphics Forum
ISSN0167-7055
Publication dates
Online21 Sep 2017
Print25 Feb 2018
Publication process dates
Deposited26 Feb 2018
Accepted30 Aug 2017
Output statusPublished
Accepted author manuscript
Copyright Statement

This is the peer reviewed version of the following article: Luo, L., Chai, C., Ma, J., Zhou, S. and Cai, W. (2018), ProactiveCrowd: Modelling Proactive Steering Behaviours for Agent-Based Crowd Simulation. Computer Graphics Forum, 37: 375–388. doi:10.1111/cgf.13303, which has been published in final form at https://doi.org/10.1111/cgf.13303. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

Digital Object Identifier (DOI)https://doi.org/10.1111/cgf.13303
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/877q6

Download files


Accepted author manuscript
  • 29
    total views
  • 19
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Development of OpenFlow Native Capabilities to optimize QoS
Breiki, M., Zhou, S. and Luo, Y. 2020. Development of OpenFlow Native Capabilities to optimize QoS. 2020 Seventh International Conference on Software Defined Systems (SDS). Paris, France 20 - 23 Apr 2020 IEEE. pp. 67-74 https://doi.org/10.1109/SDS49854.2020.9143890
Design and validation of a meter band rate in OpenFlow and OpenDaylight for optimizing QoS
Breiki, M., Zhou, S. and Luo, Y. 2020. Design and validation of a meter band rate in OpenFlow and OpenDaylight for optimizing QoS. Advances in Science, Technology and Engineering Systems Journal. 5 (2), pp. 35-43. https://doi.org/10.25046/aj050205
A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight
Al Breiki, M., Zhou, S. and Luo, Y. 2019. A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). Rabat, Morocco, Morocco 12 - 14 Apr 2019 IEEE. https://doi.org/10.1109/COMMNET.2019.8742360
Software systems for data-centric smart city applications
Chen, D., Wang, L. and Zhou, S. 2017. Software systems for data-centric smart city applications. Software: Practice and Experience. 47 (8), pp. 1043-1044. https://doi.org/10.1002/spe.2508
RA2: predicting simulation execution time for cloud-based design space explorations
Duong, T., Zhong, J., Cai, W., Li, Z. and Zhou, S. 2016. RA2: predicting simulation execution time for cloud-based design space explorations. 2016 IEEE/ACM 20th International Symposium on Distributed Simulation and Real Time Applications. London 21 - 23 Sep 2016 Institute of Electrical and Electronics Engineers (IEEE). pp. 120-127 https://doi.org/10.1109/DS-RT.2016.9
Modeling gap seeking behaviors for agent-based crowd simulation
Luo, L., Chai, C., Zhou, S. and Ma, J. 2016. Modeling gap seeking behaviors for agent-based crowd simulation. The 29th International Conference on Computer Animation and Social Agents. Geneva, Switzerland 23 - 25 May 2016 Association for Computing Machinery (ACM). pp. 37-43 https://doi.org/10.1145/2915926.2915944
Guide them through: an automatic crowd control framework using multi-objective genetic programming
Hu, N., Zhong, J., Zhou, J., Zhou, S., Cai, W. and Monterola, C. 2018. Guide them through: an automatic crowd control framework using multi-objective genetic programming. Applied Soft Computing. 66, pp. 90-103. https://doi.org/10.1016/j.asoc.2018.01.037
Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network
Zhao, Y. and Zhou, S. 2017. Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network. Sensors. 17 (3), pp. 1-20. https://doi.org/10.3390/s17030478
A review of interactive narrative systems and technologies: a training perspective
Luo, L., Cai, W., Zhou, S., Lees, M. and Yin, H. 2015. A review of interactive narrative systems and technologies: a training perspective. Simulation: Transactions of The Society for Modeling and Computer Simulation International. 91 (2), pp. 126-147. https://doi.org/10.1177/0037549714566722
Algorithms for balanced graph bi-partitioning
Wu, J., Jiang, G., Zheng, L. and Zhou, S. 2014. Algorithms for balanced graph bi-partitioning. 2014 IEEEInternational Conference on High Performance Computing and Communications (HPCC). Paris, France 20 - 22 Aug 2014 Institute of Electrical and Electronics Engineers (IEEE). pp. 185-188 https://doi.org/10.1109/HPCC.2014.35
Towards a data-driven approach to scenario generation for serious games
Luo, L., Yin, H., Cai, W., Lees, M., Othman, N. and Zhou, S. 2014. Towards a data-driven approach to scenario generation for serious games. Computer Animation and Virtual Worlds. 25 (3-4), pp. 393-402. https://doi.org/10.1002/cav.1588
Probabilistic classifiers with a generalized Gaussian scale mixture prior
Liu, G., Wu, J. and Zhou, S. 2013. Probabilistic classifiers with a generalized Gaussian scale mixture prior. Pattern Recognition. 46 (1), pp. 332-345. https://doi.org/10.1016/j.patcog.2012.07.016
Update scheduling for improving consistency in distributed virtual environments
Tang, X. and Zhou, S. 2010. Update scheduling for improving consistency in distributed virtual environments. IEEE Transactions on Parallel and Distributed Systems. 21 (6), pp. 765-777. https://doi.org/10.1109/TPDS.2009.113
Modeling and simulation of pedestrian behaviors in crowded places
Koh, W. and Zhou, S. 2011. Modeling and simulation of pedestrian behaviors in crowded places. ACM Transactions on Modeling and Computer Simulation. 21 (3), pp. 1-23. https://doi.org/10.1145/1921598.1921604
Interactivity-constrained server provisioning in large-scale distributed virtual environments
Duong, N., Nguyen, T., Zhou, S., Tang, X., Cai, W. and Ayani, R. 2012. Interactivity-constrained server provisioning in large-scale distributed virtual environments. IEEE Transactions on Parallel and Distributed Systems. 23 (2), pp. 304-312. https://doi.org/10.1109/TPDS.2011.107
Analysis of an efficient rule-based motion planning system for simulating human crowds
Xiong, M., Lees, M., Cai, W., Zhou, S. and Low, M. 2010. Analysis of an efficient rule-based motion planning system for simulating human crowds. The Visual Computer. 26 (5), pp. 367-383. https://doi.org/10.1007/s00371-010-0421-6
Fuzzy CMAC with incremental Bayesian Ying–Yang learning and dynamic rule construction
Shi, D., Nguyen, M., Zhou, S. and Yin, G. 2010. Fuzzy CMAC with incremental Bayesian Ying–Yang learning and dynamic rule construction. IEEE Transactions on Systems, Man and Cybernetics, Part B. 40 (2), pp. 548-552. https://doi.org/10.1109/TSMCB.2009.2030333