Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network

Article


Zhao, Y. and Zhou, S. 2017. Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network. Sensors. 17 (3), pp. 1-20. https://doi.org/10.3390/s17030478
TypeArticle
TitleWearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network
AuthorsZhao, Y. and Zhou, S.
Abstract

The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

PublisherMDPI AG
JournalSensors
ISSN1424-8220
Publication dates
Print28 Feb 2017
Publication process dates
Deposited23 Feb 2018
Accepted22 Feb 2017
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)https://doi.org/10.3390/s17030478
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/8779q

Download files


Publisher's version
sensors-17-00478.pdf
License: CC BY 4.0
File access level: Open

  • 29
    total views
  • 12
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Development of OpenFlow Native Capabilities to optimize QoS
Breiki, M., Zhou, S. and Luo, Y. 2020. Development of OpenFlow Native Capabilities to optimize QoS. 2020 Seventh International Conference on Software Defined Systems (SDS). Paris, France 20 - 23 Apr 2020 IEEE. pp. 67-74 https://doi.org/10.1109/SDS49854.2020.9143890
Design and validation of a meter band rate in OpenFlow and OpenDaylight for optimizing QoS
Breiki, M., Zhou, S. and Luo, Y. 2020. Design and validation of a meter band rate in OpenFlow and OpenDaylight for optimizing QoS. Advances in Science, Technology and Engineering Systems Journal. 5 (2), pp. 35-43. https://doi.org/10.25046/aj050205
A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight
Al Breiki, M., Zhou, S. and Luo, Y. 2019. A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). Rabat, Morocco, Morocco 12 - 14 Apr 2019 IEEE. https://doi.org/10.1109/COMMNET.2019.8742360
Software systems for data-centric smart city applications
Chen, D., Wang, L. and Zhou, S. 2017. Software systems for data-centric smart city applications. Software: Practice and Experience. 47 (8), pp. 1043-1044. https://doi.org/10.1002/spe.2508
RA2: predicting simulation execution time for cloud-based design space explorations
Duong, T., Zhong, J., Cai, W., Li, Z. and Zhou, S. 2016. RA2: predicting simulation execution time for cloud-based design space explorations. 2016 IEEE/ACM 20th International Symposium on Distributed Simulation and Real Time Applications. London 21 - 23 Sep 2016 Institute of Electrical and Electronics Engineers (IEEE). pp. 120-127 https://doi.org/10.1109/DS-RT.2016.9
Modeling gap seeking behaviors for agent-based crowd simulation
Luo, L., Chai, C., Zhou, S. and Ma, J. 2016. Modeling gap seeking behaviors for agent-based crowd simulation. The 29th International Conference on Computer Animation and Social Agents. Geneva, Switzerland 23 - 25 May 2016 Association for Computing Machinery (ACM). pp. 37-43 https://doi.org/10.1145/2915926.2915944
ProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation
Luo, L., Chai, C., Ma, J., Zhou, S. and Cai, W. 2018. ProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation. Computer Graphics Forum. 37 (1), pp. 375-388. https://doi.org/10.1111/cgf.13303
Guide them through: an automatic crowd control framework using multi-objective genetic programming
Hu, N., Zhong, J., Zhou, J., Zhou, S., Cai, W. and Monterola, C. 2018. Guide them through: an automatic crowd control framework using multi-objective genetic programming. Applied Soft Computing. 66, pp. 90-103. https://doi.org/10.1016/j.asoc.2018.01.037
A review of interactive narrative systems and technologies: a training perspective
Luo, L., Cai, W., Zhou, S., Lees, M. and Yin, H. 2015. A review of interactive narrative systems and technologies: a training perspective. Simulation: Transactions of The Society for Modeling and Computer Simulation International. 91 (2), pp. 126-147. https://doi.org/10.1177/0037549714566722
Algorithms for balanced graph bi-partitioning
Wu, J., Jiang, G., Zheng, L. and Zhou, S. 2014. Algorithms for balanced graph bi-partitioning. 2014 IEEEInternational Conference on High Performance Computing and Communications (HPCC). Paris, France 20 - 22 Aug 2014 Institute of Electrical and Electronics Engineers (IEEE). pp. 185-188 https://doi.org/10.1109/HPCC.2014.35
Towards a data-driven approach to scenario generation for serious games
Luo, L., Yin, H., Cai, W., Lees, M., Othman, N. and Zhou, S. 2014. Towards a data-driven approach to scenario generation for serious games. Computer Animation and Virtual Worlds. 25 (3-4), pp. 393-402. https://doi.org/10.1002/cav.1588
Probabilistic classifiers with a generalized Gaussian scale mixture prior
Liu, G., Wu, J. and Zhou, S. 2013. Probabilistic classifiers with a generalized Gaussian scale mixture prior. Pattern Recognition. 46 (1), pp. 332-345. https://doi.org/10.1016/j.patcog.2012.07.016
Update scheduling for improving consistency in distributed virtual environments
Tang, X. and Zhou, S. 2010. Update scheduling for improving consistency in distributed virtual environments. IEEE Transactions on Parallel and Distributed Systems. 21 (6), pp. 765-777. https://doi.org/10.1109/TPDS.2009.113
Modeling and simulation of pedestrian behaviors in crowded places
Koh, W. and Zhou, S. 2011. Modeling and simulation of pedestrian behaviors in crowded places. ACM Transactions on Modeling and Computer Simulation. 21 (3), pp. 1-23. https://doi.org/10.1145/1921598.1921604
Interactivity-constrained server provisioning in large-scale distributed virtual environments
Duong, N., Nguyen, T., Zhou, S., Tang, X., Cai, W. and Ayani, R. 2012. Interactivity-constrained server provisioning in large-scale distributed virtual environments. IEEE Transactions on Parallel and Distributed Systems. 23 (2), pp. 304-312. https://doi.org/10.1109/TPDS.2011.107
Analysis of an efficient rule-based motion planning system for simulating human crowds
Xiong, M., Lees, M., Cai, W., Zhou, S. and Low, M. 2010. Analysis of an efficient rule-based motion planning system for simulating human crowds. The Visual Computer. 26 (5), pp. 367-383. https://doi.org/10.1007/s00371-010-0421-6
Fuzzy CMAC with incremental Bayesian Ying–Yang learning and dynamic rule construction
Shi, D., Nguyen, M., Zhou, S. and Yin, G. 2010. Fuzzy CMAC with incremental Bayesian Ying–Yang learning and dynamic rule construction. IEEE Transactions on Systems, Man and Cybernetics, Part B. 40 (2), pp. 548-552. https://doi.org/10.1109/TSMCB.2009.2030333