Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

Article


Hua, X., Li, J., Wang, L., Jin, Z., Wilcox, R. and Fisher, J. 2014. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions. Journal of Biomechanics. 47 (13), pp. 3303-3309. https://doi.org/10.1016/j.jbiomech.2014.08.015
TypeArticle
TitleContact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions
AuthorsHua, X., Li, J., Wang, L., Jin, Z., Wilcox, R. and Fisher, J.
Abstract

Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR.

Research GroupBiophysics and Bioengineering group
PublisherElsevier
JournalJournal of Biomechanics
ISSN0021-9290
Electronic1873-2380
Publication dates
Online01 Sep 2014
Print01 Oct 2014
Publication process dates
Deposited05 Jun 2017
Accepted18 Aug 2014
Output statusPublished
Publisher's version
License
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jbiomech.2014.08.015
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/86zq5

Download files


Publisher's version
  • 40
    total views
  • 15
    total downloads
  • 5
    views this month
  • 3
    downloads this month

Export as

Related outputs

Evaluating the biomechanical interaction between the medical compression stocking and human calf using a highly anatomical fidelity three-dimensional finite element model
Lu, Y., Zhang, D., Cheng, L., Yang, Z. and Li, J. 2021. Evaluating the biomechanical interaction between the medical compression stocking and human calf using a highly anatomical fidelity three-dimensional finite element model. Textile Research Journal. 91 (11-12), pp. 1326-1340. https://doi.org/10.1177/0040517520979743
A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction
Li, J., Marra, M., Verdonschot, N. and Lu, Y. 2021. A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction. Medical Engineering and Physics. 87, pp. 38 - 44. https://doi.org/10.1016/j.medengphy.2020.11.009
Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology
Li, J. 2021. Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology. in: Jin, Z., Li, J. and Chen, Z. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues Woodhead Publishing. pp. 81-98
Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait
Li, J. 2021. Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait. Journal of the Mechanical Behavior of Biomedical Materials. 113, pp. 1-6. https://doi.org/10.1016/j.jmbbm.2020.104136
Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure
Lu, Y., Cheng, L., Yang, Z., Li, J. and Zhu, H. 2020. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. PLoS ONE. 15 (9), pp. 1-19. https://doi.org/10.1371/journal.pone.0238471
Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles
Li, J., Lu, Y., Miller, S., Jin, Z. and Hua, X. 2019. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles. Journal of Biomechanics. 94, pp. 230-234. https://doi.org/10.1016/j.jbiomech.2019.07.042
Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads
Lu, Y., Zhu, Y., Krause, M., Huber, G. and Li, J. 2019. Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2019.05.007
Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia
Lu, Y., Zuo, D., Li, J. and He, Y. 2019. Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia. Medical Engineering and Physics. 63, pp. 50-56. https://doi.org/10.1016/j.medengphy.2018.10.007
Evaluating the theory of bone mechanoregulation in the physiological loading scenario
Lu, Y., Zhao, W., Li, J. and Wu, C. 2018. Evaluating the theory of bone mechanoregulation in the physiological loading scenario. Journal of Mechanics in Medicine and Biology. 18 (2). https://doi.org/10.1142/S0219519418500112
Investigating the longitudinal effect of ovariectomy on bone properties using a novel spatiotemporal approach
Lu, Y., Liu, Y., Wu, C. and Li, J. 2018. Investigating the longitudinal effect of ovariectomy on bone properties using a novel spatiotemporal approach. Annals of Biomedical Engineering. 46 (5), pp. 749-761. https://doi.org/10.1007/s10439-018-1994-x
The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities
Hua, X., Li, J., Jin, Z. and Fisher, J. 2016. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities. Medical Engineering and Physics. 38 (6), pp. 518-525. https://doi.org/10.1016/j.medengphy.2016.03.004
The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint
Li, J., Hua, X., Jones, A., Williams, S., Jin, Z., Fisher, J. and Wilcox, R. 2016. The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint. Journal of Biomechanics. 49 (9), pp. 1679-1685. https://doi.org/10.1016/j.jbiomech.2016.03.050
Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking
Li, J., McWilliams, A., Jin, Z., Fisher, J., Stone, M., Redmond, A. and Stewart, T. 2015. Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking. Clinical Biomechanics. 30 (5), pp. 513-519. https://doi.org/10.1016/j.clinbiomech.2015.02.014
Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study
Hua, X., Li, J., Wilcox, R., Fisher, J. and Jones, A. 2015. Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 229 (8), pp. 570-580. https://doi.org/10.1177/0954411915592656
The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements
Hua, X., Li, J., Wang, L., Wilcox, R., Fisher, J. and Jin, Z. 2015. The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements. Medical Engineering and Physics. 37 (10), pp. 1008-1014. https://doi.org/10.1016/j.medengphy.2015.08.003
Experimental validation of a new biphasic model of the contact mechanics of the porcine hip
Li, J., Wang, Q., Jin, Z., Williams, S., Fisher, J. and Wilcox, R. 2014. Experimental validation of a new biphasic model of the contact mechanics of the porcine hip. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 228 (6), pp. 547-555. https://doi.org/10.1177/0954411914537618
Biphasic investigation of contact mechanics in natural human hips during activities
Li, J., Hua, X., Jin, Z., Fisher, J. and Wilcox, R. 2014. Biphasic investigation of contact mechanics in natural human hips during activities. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 228 (6), pp. 556-563. https://doi.org/10.1177/0954411914537617
Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties
Li, J., Hua, X., Jin, Z., Fisher, J. and Wilcox, R. 2014. Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties. Medical Engineering and Physics. 36 (11), pp. 1449-1454. https://doi.org/10.1016/j.medengphy.2014.05.014
Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing
Li, J., Redmond, A., Jin, Z., Fisher, J., Stone, M. and Stewart, T. 2014. Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing. Clinical Biomechanics. 29 (7), pp. 747-751. https://doi.org/10.1016/j.clinbiomech.2014.06.005
The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers
Li, J., Stewart, T., Jin, Z., Wilcox, R. and Fisher, J. 2013. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers. Journal of Biomechanics. 46 (10), pp. 1641-1647. https://doi.org/10.1016/j.jbiomech.2013.04.009