Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads

Article


Lu, Y., Zhu, Y., Krause, M., Huber, G. and Li, J. 2019. Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2019.05.007
TypeArticle
TitleEvaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads
AuthorsLu, Y., Zhu, Y., Krause, M., Huber, G. and Li, J.
Abstract

Prediction of the vertebral failure load is of great importance for the prevention and early treatment of bone fracture. However, an efficient and effective method for accurately predicting the failure load of vertebral bones is still lacking. The aim of the present study was to evaluate the capability of the simulated dual energy X-ray absorptiometry (DXA)-based finite element (FE) model for predicting vertebral failure loads. Thirteen dissected spinal segments (T11/T12/L1) were scanned using a HR-pQCT scanner and then were mechanically tested until failure. The subject-specific three-dimensional (3D) and two-dimensional (2D) FE models of T12 were generated from the HR-pQCT scanner and the simulated DXA images, respectively. Additionally, the areal bone mineral density (aBMD) and areal bone mineral content (aBMC) of T12 were calculated. The failure loads predicted by the simulated DXA-based 2D FE models were more moderately correlated with the experimental failure loads (R  = 0.66) than the aBMC (R  = 0.61) and aBMD (R  = 0.56). The 2D FE models were slightly outperformed by the HR-pQCT-based 3D FE models (R  = 0.71). The present study demonstrated that the simulated DXA-based 2D FE model has better capability for predicting the vertebral failure loads than the densitometric measurements but is outperformed by the 3D FE model. The 2D FE model is more suitable for clinical use due to the low radiation dose and low cost, but it remains to be validated by further in vitro and in vivo studies. [Abstract copyright: Copyright © 2019. Published by Elsevier Ltd.]

KeywordsBMD, DXA, Finite element analysis, Prediction capability, Vertebral failure
PublisherElsevier
JournalMedical Engineering and Physics
ISSN1350-4533
Publication dates
Online28 May 2019
Publication process dates
Deposited13 Jun 2019
Accepted19 May 2019
Accepted author manuscript
License
Copyright Statement

© 2019. This author's accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Additional information

** From PubMed via Jisc Publications Router
** History: received 20-11-2018;
revised 11-03-2019;
accepted 19-05-2019.

Digital Object Identifier (DOI)https://doi.org/10.1016/j.medengphy.2019.05.007
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/88526

  • 32
    total views
  • 22
    total downloads
  • 5
    views this month
  • 1
    downloads this month

Export as

Related outputs

Evaluating the biomechanical interaction between the medical compression stocking and human calf using a highly anatomical fidelity three-dimensional finite element model
Lu, Y., Zhang, D., Cheng, L., Yang, Z. and Li, J. 2021. Evaluating the biomechanical interaction between the medical compression stocking and human calf using a highly anatomical fidelity three-dimensional finite element model. Textile Research Journal. 91 (11-12), pp. 1326-1340. https://doi.org/10.1177/0040517520979743
A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction
Li, J., Marra, M., Verdonschot, N. and Lu, Y. 2021. A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction. Medical Engineering and Physics. 87, pp. 38 - 44. https://doi.org/10.1016/j.medengphy.2020.11.009
Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology
Li, J. 2021. Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology. in: Jin, Z., Li, J. and Chen, Z. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues Woodhead Publishing. pp. 81-98
Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait
Li, J. 2021. Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait. Journal of the Mechanical Behavior of Biomedical Materials. 113, pp. 1-6. https://doi.org/10.1016/j.jmbbm.2020.104136
Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure
Lu, Y., Cheng, L., Yang, Z., Li, J. and Zhu, H. 2020. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. PLoS ONE. 15 (9), pp. 1-19. https://doi.org/10.1371/journal.pone.0238471
Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles
Li, J., Lu, Y., Miller, S., Jin, Z. and Hua, X. 2019. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles. Journal of Biomechanics. 94, pp. 230-234. https://doi.org/10.1016/j.jbiomech.2019.07.042
Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia
Lu, Y., Zuo, D., Li, J. and He, Y. 2019. Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia. Medical Engineering and Physics. 63, pp. 50-56. https://doi.org/10.1016/j.medengphy.2018.10.007
Evaluating the theory of bone mechanoregulation in the physiological loading scenario
Lu, Y., Zhao, W., Li, J. and Wu, C. 2018. Evaluating the theory of bone mechanoregulation in the physiological loading scenario. Journal of Mechanics in Medicine and Biology. 18 (2). https://doi.org/10.1142/S0219519418500112
Investigating the longitudinal effect of ovariectomy on bone properties using a novel spatiotemporal approach
Lu, Y., Liu, Y., Wu, C. and Li, J. 2018. Investigating the longitudinal effect of ovariectomy on bone properties using a novel spatiotemporal approach. Annals of Biomedical Engineering. 46 (5), pp. 749-761. https://doi.org/10.1007/s10439-018-1994-x
The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities
Hua, X., Li, J., Jin, Z. and Fisher, J. 2016. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities. Medical Engineering and Physics. 38 (6), pp. 518-525. https://doi.org/10.1016/j.medengphy.2016.03.004
The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint
Li, J., Hua, X., Jones, A., Williams, S., Jin, Z., Fisher, J. and Wilcox, R. 2016. The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint. Journal of Biomechanics. 49 (9), pp. 1679-1685. https://doi.org/10.1016/j.jbiomech.2016.03.050
Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking
Li, J., McWilliams, A., Jin, Z., Fisher, J., Stone, M., Redmond, A. and Stewart, T. 2015. Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking. Clinical Biomechanics. 30 (5), pp. 513-519. https://doi.org/10.1016/j.clinbiomech.2015.02.014
Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study
Hua, X., Li, J., Wilcox, R., Fisher, J. and Jones, A. 2015. Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 229 (8), pp. 570-580. https://doi.org/10.1177/0954411915592656
The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements
Hua, X., Li, J., Wang, L., Wilcox, R., Fisher, J. and Jin, Z. 2015. The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements. Medical Engineering and Physics. 37 (10), pp. 1008-1014. https://doi.org/10.1016/j.medengphy.2015.08.003
Experimental validation of a new biphasic model of the contact mechanics of the porcine hip
Li, J., Wang, Q., Jin, Z., Williams, S., Fisher, J. and Wilcox, R. 2014. Experimental validation of a new biphasic model of the contact mechanics of the porcine hip. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 228 (6), pp. 547-555. https://doi.org/10.1177/0954411914537618
Biphasic investigation of contact mechanics in natural human hips during activities
Li, J., Hua, X., Jin, Z., Fisher, J. and Wilcox, R. 2014. Biphasic investigation of contact mechanics in natural human hips during activities. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 228 (6), pp. 556-563. https://doi.org/10.1177/0954411914537617
Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties
Li, J., Hua, X., Jin, Z., Fisher, J. and Wilcox, R. 2014. Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties. Medical Engineering and Physics. 36 (11), pp. 1449-1454. https://doi.org/10.1016/j.medengphy.2014.05.014
Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing
Li, J., Redmond, A., Jin, Z., Fisher, J., Stone, M. and Stewart, T. 2014. Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing. Clinical Biomechanics. 29 (7), pp. 747-751. https://doi.org/10.1016/j.clinbiomech.2014.06.005
Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions
Hua, X., Li, J., Wang, L., Jin, Z., Wilcox, R. and Fisher, J. 2014. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions. Journal of Biomechanics. 47 (13), pp. 3303-3309. https://doi.org/10.1016/j.jbiomech.2014.08.015
The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers
Li, J., Stewart, T., Jin, Z., Wilcox, R. and Fisher, J. 2013. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers. Journal of Biomechanics. 46 (10), pp. 1641-1647. https://doi.org/10.1016/j.jbiomech.2013.04.009