Evaluating the theory of bone mechanoregulation in the physiological loading scenario

Article


Lu, Y., Zhao, W., Li, J. and Wu, C. 2018. Evaluating the theory of bone mechanoregulation in the physiological loading scenario. Journal of Mechanics in Medicine and Biology. 18 (2). https://doi.org/10.1142/S0219519418500112
TypeArticle
TitleEvaluating the theory of bone mechanoregulation in the physiological loading scenario
AuthorsLu, Y., Zhao, W., Li, J. and Wu, C.
Abstract

In this paper, the theory of bone mechanoregulation under physiological loading was evaluated. The entire right tibiae of wild type (WT, N=5) and parathyroid hormone (PTH, N=5) treated C57BL/6J female mice were scanned using an in vivo μCT imaging system at 14, 16, 17, 18, 19, 20, 21, and 22 weeks. The PTH intervention started from week 18 until week 22. Subject-specific finite element (FE) models were created from the μCT images and physiological loading condition was defined in the FE models. The rates of changes in bone mineral content (BMC), bone mineral density (BMD), and bone tissue density (TMD) were quantified over 40 anatomical compartments across the entire mouse tibia. The resulting values were then correlated to the average 1st principal tensile strain (ε1) and the strain energy density (SED) for every compartment at weeks 18, 20, and 22. It was found that: in both groups, ε1 had a minimal effect on the variability of ΔBMC (p>0.01); SED had a significant effect on the variability of ΔBMC only in the WT group (p<0.01); ε1 had a significant effect on the variability of ΔBMD only in the PTH group (p<0.01); SED had a significant effect on the variability of ΔBMD in both groups (p<0.01); neither SED nor ε1 had a significant effect on the variability of ΔTMD (p>0.01). These results are the first to reveal the mechanism of bone mechanoregulation in the physiological loading scenario.

Research GroupBiophysics and Bioengineering group
PublisherWorld Scientific Publishing Co. Pte Ltd
JournalJournal of Mechanics in Medicine and Biology
ISSN0219-5194
Publication dates
Print01 Mar 2018
Publication process dates
Deposited26 Feb 2018
Accepted01 Jan 2018
Output statusPublished
Accepted author manuscript
Copyright Statement

Electronic version of an article published as Journal of Mechanics in Medicine and Biology, March 2018, Vol. 18, No. 02, 1850011 https://doi.org/10.1142/S0219519418500112 © copyright World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/jmmb

Digital Object Identifier (DOI)https://doi.org/10.1142/S0219519418500112
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/877v2

  • 40
    total views
  • 30
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Evaluating the biomechanical interaction between the medical compression stocking and human calf using a highly anatomical fidelity three-dimensional finite element model
Lu, Y., Zhang, D., Cheng, L., Yang, Z. and Li, J. 2021. Evaluating the biomechanical interaction between the medical compression stocking and human calf using a highly anatomical fidelity three-dimensional finite element model. Textile Research Journal. 91 (11-12), pp. 1326-1340. https://doi.org/10.1177/0040517520979743
A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction
Li, J., Marra, M., Verdonschot, N. and Lu, Y. 2021. A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction. Medical Engineering and Physics. 87, pp. 38 - 44. https://doi.org/10.1016/j.medengphy.2020.11.009
Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology
Li, J. 2021. Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology. in: Jin, Z., Li, J. and Chen, Z. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues Woodhead Publishing. pp. 81-98
Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait
Li, J. 2021. Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait. Journal of the Mechanical Behavior of Biomedical Materials. 113, pp. 1-6. https://doi.org/10.1016/j.jmbbm.2020.104136
Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure
Lu, Y., Cheng, L., Yang, Z., Li, J. and Zhu, H. 2020. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. PLoS ONE. 15 (9), pp. 1-19. https://doi.org/10.1371/journal.pone.0238471
Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles
Li, J., Lu, Y., Miller, S., Jin, Z. and Hua, X. 2019. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles. Journal of Biomechanics. 94, pp. 230-234. https://doi.org/10.1016/j.jbiomech.2019.07.042
Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads
Lu, Y., Zhu, Y., Krause, M., Huber, G. and Li, J. 2019. Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2019.05.007
Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia
Lu, Y., Zuo, D., Li, J. and He, Y. 2019. Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia. Medical Engineering and Physics. 63, pp. 50-56. https://doi.org/10.1016/j.medengphy.2018.10.007
Investigating the longitudinal effect of ovariectomy on bone properties using a novel spatiotemporal approach
Lu, Y., Liu, Y., Wu, C. and Li, J. 2018. Investigating the longitudinal effect of ovariectomy on bone properties using a novel spatiotemporal approach. Annals of Biomedical Engineering. 46 (5), pp. 749-761. https://doi.org/10.1007/s10439-018-1994-x
The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities
Hua, X., Li, J., Jin, Z. and Fisher, J. 2016. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities. Medical Engineering and Physics. 38 (6), pp. 518-525. https://doi.org/10.1016/j.medengphy.2016.03.004
The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint
Li, J., Hua, X., Jones, A., Williams, S., Jin, Z., Fisher, J. and Wilcox, R. 2016. The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint. Journal of Biomechanics. 49 (9), pp. 1679-1685. https://doi.org/10.1016/j.jbiomech.2016.03.050
Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking
Li, J., McWilliams, A., Jin, Z., Fisher, J., Stone, M., Redmond, A. and Stewart, T. 2015. Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking. Clinical Biomechanics. 30 (5), pp. 513-519. https://doi.org/10.1016/j.clinbiomech.2015.02.014
Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study
Hua, X., Li, J., Wilcox, R., Fisher, J. and Jones, A. 2015. Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 229 (8), pp. 570-580. https://doi.org/10.1177/0954411915592656
The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements
Hua, X., Li, J., Wang, L., Wilcox, R., Fisher, J. and Jin, Z. 2015. The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements. Medical Engineering and Physics. 37 (10), pp. 1008-1014. https://doi.org/10.1016/j.medengphy.2015.08.003
Experimental validation of a new biphasic model of the contact mechanics of the porcine hip
Li, J., Wang, Q., Jin, Z., Williams, S., Fisher, J. and Wilcox, R. 2014. Experimental validation of a new biphasic model of the contact mechanics of the porcine hip. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 228 (6), pp. 547-555. https://doi.org/10.1177/0954411914537618
Biphasic investigation of contact mechanics in natural human hips during activities
Li, J., Hua, X., Jin, Z., Fisher, J. and Wilcox, R. 2014. Biphasic investigation of contact mechanics in natural human hips during activities. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 228 (6), pp. 556-563. https://doi.org/10.1177/0954411914537617
Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties
Li, J., Hua, X., Jin, Z., Fisher, J. and Wilcox, R. 2014. Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties. Medical Engineering and Physics. 36 (11), pp. 1449-1454. https://doi.org/10.1016/j.medengphy.2014.05.014
Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing
Li, J., Redmond, A., Jin, Z., Fisher, J., Stone, M. and Stewart, T. 2014. Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing. Clinical Biomechanics. 29 (7), pp. 747-751. https://doi.org/10.1016/j.clinbiomech.2014.06.005
Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions
Hua, X., Li, J., Wang, L., Jin, Z., Wilcox, R. and Fisher, J. 2014. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions. Journal of Biomechanics. 47 (13), pp. 3303-3309. https://doi.org/10.1016/j.jbiomech.2014.08.015
The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers
Li, J., Stewart, T., Jin, Z., Wilcox, R. and Fisher, J. 2013. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers. Journal of Biomechanics. 46 (10), pp. 1641-1647. https://doi.org/10.1016/j.jbiomech.2013.04.009