A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction

Article


Li, J., Marra, M., Verdonschot, N. and Lu, Y. 2021. A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction. Medical Engineering and Physics. 87, pp. 38 - 44. https://doi.org/10.1016/j.medengphy.2020.11.009
TypeArticle
TitleA three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction
AuthorsLi, J., Marra, M., Verdonschot, N. and Lu, Y.
Abstract

Non-uniform contraction exists in many skeletal muscles and plays an important role in the function of the musculoskeletal system. Particularly in the gluteus medius (GM) muscle, its three subdivisions appear activated differently while performing various motion tasks. However, the non-uniform contractile mechanism of GM is poorly understood. In this study, a three-dimensional finite element (FE) model of GM was developed. Non-uniform contraction patterns of the three subdivisions of GM during abduction, internal and external rotation were simulated through an inverse-dynamics-based optimization approach. A set of sensitivity studies were also undertaken to evaluate the influence of parameters including the cost function of optimization and dimension of GM subdivisions on the predicted non-uniform contraction and biomechanics of the muscle. Contraction across GM was found to be highly non-uniform during various motions. The whole GM was activated during abduction, whereas only the anterior and posterior subdivisions were primarily involved in internal and external rotation, respectively. The active contractile stress in a subdivision during abduction was increased if its proportion in GM was expanded. The cost functions of minimizing the sum of active contractile stresses squared/cubed provide similar qualitative predictions of the trend of results. This approach provides the methodological basis to enable simulation of non-uniform muscle contraction using 3D musculoskeletal models.

Keywords3D finite element muscle model, Non-uniform muscle contraction, Gluteus medius, Optimization of muscle contraction, Musculoskeletal modelling
Research GroupBiophysics and Bioengineering group
PublisherElsevier
JournalMedical Engineering and Physics
ISSN1350-4533
Publication dates
Online20 Nov 2020
Print01 Jan 2021
Publication process dates
Deposited27 Nov 2020
Accepted18 Nov 2020
Output statusPublished
Accepted author manuscript
License
Copyright Statement

© 2020. This author's accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Digital Object Identifier (DOI)https://doi.org/10.1016/j.medengphy.2020.11.009
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/892z0

Download files


Accepted author manuscript
  • 59
    total views
  • 19
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Evaluating the biomechanical interaction between the medical compression stocking and human calf using a highly anatomical fidelity three-dimensional finite element model
Lu, Y., Zhang, D., Cheng, L., Yang, Z. and Li, J. 2021. Evaluating the biomechanical interaction between the medical compression stocking and human calf using a highly anatomical fidelity three-dimensional finite element model. Textile Research Journal. 91 (11-12), pp. 1326-1340. https://doi.org/10.1177/0040517520979743
Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology
Li, J. 2021. Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology. in: Jin, Z., Li, J. and Chen, Z. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues Woodhead Publishing. pp. 81-98
Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait
Li, J. 2021. Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait. Journal of the Mechanical Behavior of Biomedical Materials. 113, pp. 1-6. https://doi.org/10.1016/j.jmbbm.2020.104136
Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure
Lu, Y., Cheng, L., Yang, Z., Li, J. and Zhu, H. 2020. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. PLoS ONE. 15 (9), pp. 1-19. https://doi.org/10.1371/journal.pone.0238471
Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles
Li, J., Lu, Y., Miller, S., Jin, Z. and Hua, X. 2019. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles. Journal of Biomechanics. 94, pp. 230-234. https://doi.org/10.1016/j.jbiomech.2019.07.042
Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads
Lu, Y., Zhu, Y., Krause, M., Huber, G. and Li, J. 2019. Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2019.05.007
Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia
Lu, Y., Zuo, D., Li, J. and He, Y. 2019. Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia. Medical Engineering and Physics. 63, pp. 50-56. https://doi.org/10.1016/j.medengphy.2018.10.007
Evaluating the theory of bone mechanoregulation in the physiological loading scenario
Lu, Y., Zhao, W., Li, J. and Wu, C. 2018. Evaluating the theory of bone mechanoregulation in the physiological loading scenario. Journal of Mechanics in Medicine and Biology. 18 (2). https://doi.org/10.1142/S0219519418500112
Investigating the longitudinal effect of ovariectomy on bone properties using a novel spatiotemporal approach
Lu, Y., Liu, Y., Wu, C. and Li, J. 2018. Investigating the longitudinal effect of ovariectomy on bone properties using a novel spatiotemporal approach. Annals of Biomedical Engineering. 46 (5), pp. 749-761. https://doi.org/10.1007/s10439-018-1994-x
The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities
Hua, X., Li, J., Jin, Z. and Fisher, J. 2016. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities. Medical Engineering and Physics. 38 (6), pp. 518-525. https://doi.org/10.1016/j.medengphy.2016.03.004
The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint
Li, J., Hua, X., Jones, A., Williams, S., Jin, Z., Fisher, J. and Wilcox, R. 2016. The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint. Journal of Biomechanics. 49 (9), pp. 1679-1685. https://doi.org/10.1016/j.jbiomech.2016.03.050
Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking
Li, J., McWilliams, A., Jin, Z., Fisher, J., Stone, M., Redmond, A. and Stewart, T. 2015. Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking. Clinical Biomechanics. 30 (5), pp. 513-519. https://doi.org/10.1016/j.clinbiomech.2015.02.014
Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study
Hua, X., Li, J., Wilcox, R., Fisher, J. and Jones, A. 2015. Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 229 (8), pp. 570-580. https://doi.org/10.1177/0954411915592656
The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements
Hua, X., Li, J., Wang, L., Wilcox, R., Fisher, J. and Jin, Z. 2015. The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements. Medical Engineering and Physics. 37 (10), pp. 1008-1014. https://doi.org/10.1016/j.medengphy.2015.08.003
Experimental validation of a new biphasic model of the contact mechanics of the porcine hip
Li, J., Wang, Q., Jin, Z., Williams, S., Fisher, J. and Wilcox, R. 2014. Experimental validation of a new biphasic model of the contact mechanics of the porcine hip. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 228 (6), pp. 547-555. https://doi.org/10.1177/0954411914537618
Biphasic investigation of contact mechanics in natural human hips during activities
Li, J., Hua, X., Jin, Z., Fisher, J. and Wilcox, R. 2014. Biphasic investigation of contact mechanics in natural human hips during activities. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine. 228 (6), pp. 556-563. https://doi.org/10.1177/0954411914537617
Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties
Li, J., Hua, X., Jin, Z., Fisher, J. and Wilcox, R. 2014. Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties. Medical Engineering and Physics. 36 (11), pp. 1449-1454. https://doi.org/10.1016/j.medengphy.2014.05.014
Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing
Li, J., Redmond, A., Jin, Z., Fisher, J., Stone, M. and Stewart, T. 2014. Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing. Clinical Biomechanics. 29 (7), pp. 747-751. https://doi.org/10.1016/j.clinbiomech.2014.06.005
Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions
Hua, X., Li, J., Wang, L., Jin, Z., Wilcox, R. and Fisher, J. 2014. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions. Journal of Biomechanics. 47 (13), pp. 3303-3309. https://doi.org/10.1016/j.jbiomech.2014.08.015
The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers
Li, J., Stewart, T., Jin, Z., Wilcox, R. and Fisher, J. 2013. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers. Journal of Biomechanics. 46 (10), pp. 1641-1647. https://doi.org/10.1016/j.jbiomech.2013.04.009