Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure

Article


Lu, Y., Cheng, L., Yang, Z., Li, J. and Zhu, H. 2020. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. PLoS ONE. 15 (9), pp. 1-19. https://doi.org/10.1371/journal.pone.0238471
TypeArticle
TitleRelationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure
AuthorsLu, Y., Cheng, L., Yang, Z., Li, J. and Zhu, H.
Abstract

Bone scaffolds are widely used as one of the main bone substitute materials. However, many bone scaffold microstructure topologies exist and it is still unclear which topology to use when designing scaffold for a specific application. The aim of the present study was to reveal the mechanism of the microstructure-driven performance of bone scaffold and thus to provide guideline on scaffold design. Finite element (FE) models of five TPMS (Diamond, Gyroid, Schwarz P, Fischer-Koch S and F-RD) and three traditional (Cube, FD-Cube and Octa) scaffolds were generated. The effective compressive and shear moduli of scaffolds were calculated from the mechanical analysis using the FE unit cell models with the periodic boundary condition. The scaffold permeability was calculated from the computational fluid dynamics (CFD) analysis using the 4×4×4 FE models. It is revealed that the surface-to-volume ratio of the Fischer-Koch S-based scaffold is the highest among the scaffolds investigated. The mechanical analysis revealed that the bending deformation dominated structures (e.g., the Diamond, the Gyroid, the Schwarz P) have higher effective shear moduli. The stretching deformation dominated structures (e.g., the Schwarz P, the Cube) have higher effective compressive moduli. For all the scaffolds, when the same amount of change in scaffold porosity is made, the corresponding change in the scaffold relative shear modulus is larger than that in the relative compressive modulus. The CFD analysis revealed that the structures with the simple and straight pores (e.g., Cube) have higher permeability than the structures with the complex pores (e.g., Fischer-Koch S). The main contribution of the present study is that the relationship between scaffold properties and the underlying microstructure is systematically investigated and thus some guidelines on the design of bone scaffolds are provided, for example, in the scenario where a high surface-to-volume ratio is required, it is suggested to use the Fischer-Koch S based scaffold.

PublisherPublic Library of Science
JournalPLoS ONE
ISSN1932-6203
Publication dates
Online01 Sep 2020
Print01 Sep 2020
Publication process dates
Deposited16 Sep 2020
Accepted16 Aug 2020
Output statusPublished
Publisher's version
License
Copyright Statement

© 2020 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Digital Object Identifier (DOI)https://doi.org/10.1371/journal.pone.0238471
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/8912z

Download files

  • 22
    total views
  • 3
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as