A firefly-inspired method for protein structure prediction in lattice models
Article
Maher, B., Albrecht, A., Loomes, M., Yang, X. and Steinhofel, K. 2014. A firefly-inspired method for protein structure prediction in lattice models. Biomolecules. 4 (1), pp. 56-75. https://doi.org/10.3390/biom4010056
Type | Article |
---|---|
Title | A firefly-inspired method for protein structure prediction in lattice models |
Authors | Maher, B., Albrecht, A., Loomes, M., Yang, X. and Steinhofel, K. |
Abstract | We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa–Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function valuations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models. |
Research Group | SensoLab group |
Publisher | MDPI |
Journal | Biomolecules |
ISSN | 2218-273X |
Publication dates | |
Online | 07 Jan 2014 |
Mar 2014 | |
Publication process dates | |
Deposited | 19 Feb 2014 |
Submitted | 01 Dec 2013 |
Accepted | 27 Dec 2013 |
Output status | Published |
Publisher's version | License File Access Level Open |
Copyright Statement | © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
Digital Object Identifier (DOI) | https://doi.org/10.3390/biom4010056 |
Web of Science identifier | MEDLINE:24970205 |
Language | English |
https://repository.mdx.ac.uk/item/84q1q
Download files
61
total views5
total downloads4
views this month0
downloads this month
Export as
Related outputs
Firefly algorithm for movable antenna arrays
Kha, H., Le, T., Thuc, K., Luyen, T., Yang, X. and Ng, D. 2024. Firefly algorithm for movable antenna arrays. IEEE Wireless Communications Letters. 13 (11), pp. 3157-3161. https://doi.org/10.1109/LWC.2024.3456899A generalized evolutionary metaheuristic (GEM) algorithm for engineering optimization
Yang, X. 2024. A generalized evolutionary metaheuristic (GEM) algorithm for engineering optimization. Cogent Engineering. 11 (1). https://doi.org/10.1080/23311916.2024.2364041Parameter tuning of the Firefly Algorithm by standard Monte Carlo and Quasi-Monte Carlo methods
Joy, G., Huyck, C. and Yang, X. 2024. Parameter tuning of the Firefly Algorithm by standard Monte Carlo and Quasi-Monte Carlo methods. Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V., Dongarra, J. and Sloot, P. (ed.) 24th International Conference on Computational Science. Malaga, Spain 02 - 04 Jul 2024 Cham Springer. pp. 242–253 https://doi.org/10.1007/978-3-031-63775-9_17Cognitive beamforming design for dual-function radar-communications
Le, T., Ku, I., Yang, X., Masouros, C. and Le-Ngoc, T. 2024. Cognitive beamforming design for dual-function radar-communications. 2024 IEEE 99th Vehicular Technology Conference. Singapore 24 - 27 Jun 2024 IEEE. pp. 1-5 https://doi.org/10.1109/VTC2024-Spring62846.2024.10683337Generalized Firefly Algorithm for optimal transmit beamforming
Le, T. and Yang, X. 2024. Generalized Firefly Algorithm for optimal transmit beamforming. IEEE Transactions on Wireless Communications. 23 (6), pp. 5863-5877. https://doi.org/10.1109/TWC.2023.3328713A rank-one optimization framework and its applications to transmit beamforming
Le, T., Ng, D. and Yang, X. 2024. A rank-one optimization framework and its applications to transmit beamforming. IEEE Transactions on Vehicular Technology. 73 (1), pp. 620-636. https://doi.org/10.1109/TVT.2023.3303623Multi-objective flower pollination algorithm: a new technique for EEG signal denoising
Alyasseri, Z., Khader, A., Al-Betar, M., Yang, X., Mohammed, M., Abdulkareem, K., Kadry, S. and Razzak, I. 2023. Multi-objective flower pollination algorithm: a new technique for EEG signal denoising. Neural Computing and Applications. 35 (11), p. 7943–7962. https://doi.org/10.1007/s00521-021-06757-2Review of parameter tuning methods for nature-inspired algorithms
Joy, G., Huyck, C. and Yang, X. 2023. Review of parameter tuning methods for nature-inspired algorithms. in: Yang, X. (ed.) Benchmarks and Hybrid Algorithms in Optimization and Applications Singapore Springer. pp. 33-47Firefly algorithm for beamforming design in RIS-aided communication systems
Le, T. and Yang, X. 2023. Firefly algorithm for beamforming design in RIS-aided communication systems. The 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring). Florence, Italy 20 - 23 Jun 2023 IEEE. https://doi.org/10.1109/VTC2023-Spring57618.2023.10201127Flower pollination algorithm with pollinator attraction
Mergos, P. and Yang, X. 2023. Flower pollination algorithm with pollinator attraction. Evolutionary Intelligence. 16 (3), pp. 873-889. https://doi.org/10.1007/s12065-022-00700-7A binary PSO-based ensemble under-sampling model for rebalancing imbalanced training data
Li, J., Wu, Y., Fong, S., Tallon-Ballesteros, A., Yang, X., Mohammed, S. and Wu, F. 2022. A binary PSO-based ensemble under-sampling model for rebalancing imbalanced training data. Journal of Supercomputing. 78, p. 7428–7463. https://doi.org/10.1007/s11227-021-04177-6An elitism-based multi-objective evolutionary algorithm for min-cost network disintegration
Li, Q., Liu, S., Bai, Y., He, X. and Yang, X. 2022. An elitism-based multi-objective evolutionary algorithm for min-cost network disintegration. Knowledge-Based Systems. 239, pp. 1-19. https://doi.org/10.1016/j.knosys.2021.107944Swarm and stochastic computing for global optimization
Yang, X. 2021. Swarm and stochastic computing for global optimization. in: Adamatzky, A. (ed.) Handbook of Unconventional Computing - Volume 1: Theory World Scientific Publishing Co. Pte Ltd. pp. 469-487FPA clust: evaluation of the flower pollination algorithm for data clustering
Senthilnath, J., Kulkarni, S., Suresh, S., Yang, X.-S. and Benediktsson, J.A. 2021. FPA clust: evaluation of the flower pollination algorithm for data clustering. Evolutionary Intelligence. 14 (3), pp. 1189-1199. https://doi.org/10.1007/s12065-019-00254-1MO-MFCGA: Multiobjective multifactorial cellular genetic algorithm for evolutionary multitasking
Osaba, E., Del Ser, J., Martinez, A., Lobo, J., Nebro, A. and Yang, X. 2021. MO-MFCGA: Multiobjective multifactorial cellular genetic algorithm for evolutionary multitasking. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). Orlando, FL, USA 05 - 07 Dec 2021 IEEE. pp. 1-8 https://doi.org/10.1109/SSCI50451.2021.9660024Flower pollination algorithm parameters tuning
Mergos, P. and Yang, X. 2021. Flower pollination algorithm parameters tuning. Soft Computing. 25 (22), pp. 14429-14447. https://doi.org/10.1007/s00500-021-06230-1Influence of initialization on the performance of metaheuristic optimizers
Li, Q., Liu, S. and Yang, X. 2020. Influence of initialization on the performance of metaheuristic optimizers. Applied Soft Computing. 91. https://doi.org/10.1016/j.asoc.2020.106193White learning methodology: a case study of cancer-related disease factors analysis in real-time PACS environment
Li, T., Fong, S., Siu, S., Yang, X., Liu, L. and Mohammed, S. 2020. White learning methodology: a case study of cancer-related disease factors analysis in real-time PACS environment. Computer Methods and Programs in Biomedicine. 197, pp. 1-18. https://doi.org/10.1016/j.cmpb.2020.105724A nature-inspired feature selection approach based on hypercomplex information
de Rosa, G., Papa, J. and Yang, X. 2020. A nature-inspired feature selection approach based on hypercomplex information. Applied Soft Computing. 94. https://doi.org/10.1016/j.asoc.2020.106453Nature-inspired optimization algorithms: challenges and open problems
Yang, X. 2020. Nature-inspired optimization algorithms: challenges and open problems. Journal of Computational Science. 46. https://doi.org/10.1016/j.jocs.2020.101104Atomic scheduling of appliance energy consumption in residential smart grids
Kim, K., Lee, S., Ting, T. and Yang, X. 2019. Atomic scheduling of appliance energy consumption in residential smart grids. Energies. 12 (19). https://doi.org/10.3390/en12193666