Skins and sleeves for soft robotics: inspiration from nature and architecture

Article


Lekakou, C., Elsayed, Y., Geng, T. and Saaj, C. 2015. Skins and sleeves for soft robotics: inspiration from nature and architecture. Advanced Engineering Materials. 17 (8), pp. 1180-1188. https://doi.org/10.1002/adem.201400406
TypeArticle
TitleSkins and sleeves for soft robotics: inspiration from nature and architecture
AuthorsLekakou, C., Elsayed, Y., Geng, T. and Saaj, C.
Abstract

This paper is on the design, fabrication, and testing of skins and sleeves for soft robotics with the focus on the mechanical features of the microstructure of these skins, drawing inspiration from nature and architecture. Biological inspirations drawn from animals are used for designing skin membranes or skin structures for soft robotic actuators, in particular pneumatic actuators that protect, guide, and contribute to the development of the actuated shape. The results presented in this paper will be a new step toward advancing the state-of-the-art of biologically inspired soft robots for minimally invasive surgery. Inspirations from architecture are of particular interest in the areas of formability of design and continuous flow. The report presents a trade-off study using various skin and sleeve technologies of innovative fiber structures and combinations of different materials in different innovative designs, surrounding a pneumatically actuated, soft robot of variable stiffness.

PublisherWiley-VCH Verlag
JournalAdvanced Engineering Materials
ISSN1438-1656
Electronic1527-2648
Publication dates
Online15 Jan 2015
Print06 Aug 2015
Publication process dates
Deposited26 May 2015
Accepted26 Nov 2014
Output statusPublished
Digital Object Identifier (DOI)https://doi.org/10.1002/adem.201400406
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/85664

  • 56
    total views
  • 0
    total downloads
  • 5
    views this month
  • 0
    downloads this month

Export as

Related outputs

The effect of swing leg retraction on biped walking stability is influenced by the walking speed and step-length
Bao, R. and Geng, T. 2018. The effect of swing leg retraction on biped walking stability is influenced by the walking speed and step-length. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain 01 - 05 Oct 2018 IEEE. pp. 3257-3262 https://doi.org/10.1109/IROS.2018.8593932
Wrist movement detector for ROS based control of the robotic hand
Krawczyk, M., Yang, Z., Gandhi, V., Karamanoglu, M., Franca, F., Priscila, L., Xiaochen, W. and Geng, T. 2018. Wrist movement detector for ROS based control of the robotic hand. Advances in Robotics & Automation. 7 (1). https://doi.org/10.4172/2168-9695.1000182
ROS based autonomous control of a humanoid robot
Kalyani, G., Gandhi, V., Yang, Z. and Geng, T. 2016. ROS based autonomous control of a humanoid robot. 25th International Conference on Artificial Neural Networks (ICANN). Barcelona, Spain 06 - 09 Sep 2016 Springer. pp. 550-551 https://doi.org/10.1007/978-3-319-44778-0
Fast walking with rhythmic sway of torso in a 2D passive ankle walker
Bao, R. and Geng, T. 2018. Fast walking with rhythmic sway of torso in a 2D passive ankle walker. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain 01 - 05 Oct 2018 IEEE. pp. 4363-4368 https://doi.org/10.1109/IROS.2018.8593665
Using robot operating system (ROS) and single board computer to control bioloid robot motion
Kalyani, G., Yang, Z., Gandhi, V. and Geng, T. 2017. Using robot operating system (ROS) and single board computer to control bioloid robot motion. 18th Towards Autonomous Robotic Systems (TAROS) Conference. Guildford, Surrey, UK 19 - 21 Jul 2017 Springer. pp. 41-50 https://doi.org/10.1007/978-3-319-64107-2_4
Dynamics and trajectory planning of a planar flipping robot
Geng, T. 2005. Dynamics and trajectory planning of a planar flipping robot. Mechanics Research Communications. 32 (6), pp. 636-644. https://doi.org/10.1016/j.mechrescom.2004.06.009
A reflexive neural network for dynamic biped walking control
Geng, T., Porr, B. and Wörgötter, F. 2006. A reflexive neural network for dynamic biped walking control. Neural Computation. 18 (5), pp. 1156-1196. https://doi.org/10.1162/089976606776241057
Fast biped walking with a sensor-driven neuronal controller and real-time online learning
Geng, T. 2006. Fast biped walking with a sensor-driven neuronal controller and real-time online learning. The International Journal of Robotics Research. 25 (3), pp. 243-259. https://doi.org/10.1177/0278364906063822
Adaptive, fast walking in a biped robot under neuronal control and learning
Manoonpong, P., Geng, T., Kulvicius, T., Porr, B. and Wörgötter, F. 2007. Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Computational Biology. 3 (7), p. e134. https://doi.org/10.1371/journal.pcbi.0030134
A novel design of 4-class BCI using two binary classifiers and parallel mental tasks
Geng, T., Gan, J., Dyson, M., Tsui, C. and Sepulveda, F. 2008. A novel design of 4-class BCI using two binary classifiers and parallel mental tasks. Computational Intelligence and Neuroscience. 2008, pp. 1-5. https://doi.org/10.1155/2008/437306
A self-paced online BCI for mobile robot control
Geng, T., Gan, J. and Hu, H. 2010. A self-paced online BCI for mobile robot control. International Journal of Advanced Mechatronic Systems. 2 (1/2), p. 28. https://doi.org/10.1504/IJAMECHS.2010.030846
Planar biped walking with an equilibrium point controller and state machines
Geng, T. and Gan, J. 2010. Planar biped walking with an equilibrium point controller and state machines. IEEE/ASME transactions on mechatronics. 15 (2), pp. 253-260. https://doi.org/10.1109/TMECH.2009.2024742
Transferring human grasping synergies to a robot
Geng, T., Lee, M. and Hülse, M. 2011. Transferring human grasping synergies to a robot. Mechatronics. 21 (1), pp. 272-284. https://doi.org/10.1016/j.mechatronics.2010.11.003
Synergy-based affordance learning for robotic grasping
Geng, T., Wilson, J., Sheldon, M., Lee, M. and Hülse, M. 2013. Synergy-based affordance learning for robotic grasping. Robotics and Autonomous Systems. 61 (12), pp. 1626-1640. https://doi.org/10.1016/j.robot.2013.07.002
Online regulation of the walking speed of a planar limit cycle walker via model predictive control
Geng, T. 2014. Online regulation of the walking speed of a planar limit cycle walker via model predictive control. IEEE Transactions on Industrial Electronics. 61 (5), pp. 2326-2333. https://doi.org/10.1109/TIE.2013.2272274
A unified system identification approach for a class of pneumatically-driven soft actuators
Wang, X., Geng, T., Elsayed, Y., Saaj, C. and Lekakou, C. 2015. A unified system identification approach for a class of pneumatically-driven soft actuators. Robotics and Autonomous Systems. 63, pp. 136-149. https://doi.org/10.1016/j.robot.2014.08.017
Torso inclination enables faster walking in a planar biped robot with passive ankles
Geng, T. 2014. Torso inclination enables faster walking in a planar biped robot with passive ankles. IEEE Transactions on Robotics. 30 (3), pp. 753-758. https://doi.org/10.1109/TRO.2014.2298058
Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications
Elsayed, Y., Vincensi, A., Lekakou, C., Geng, T., Saaj, C., Ranzani, T., Cianchetti, M. and Menciassi, A. 2014. Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robotics. 1 (4), pp. 255-262. https://doi.org/10.1089/soro.2014.0016