Adaptive, fast walking in a biped robot under neuronal control and learning

Article


Manoonpong, P., Geng, T., Kulvicius, T., Porr, B. and Wörgötter, F. 2007. Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Computational Biology. 3 (7), p. e134. https://doi.org/10.1371/journal.pcbi.0030134
TypeArticle
TitleAdaptive, fast walking in a biped robot under neuronal control and learning
AuthorsManoonpong, P., Geng, T., Kulvicius, T., Porr, B. and Wörgötter, F.
Abstract

Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.

JournalPLoS Computational Biology
ISSN1553-734X
Publication dates
Print13 Jul 2007
Publication process dates
Deposited26 May 2015
Accepted30 May 2007
Output statusPublished
Publisher's version
License
Digital Object Identifier (DOI)https://doi.org/10.1371/journal.pcbi.0030134
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/85675

Download files


Publisher's version
  • 48
    total views
  • 10
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

The effect of swing leg retraction on biped walking stability is influenced by the walking speed and step-length
Bao, R. and Geng, T. 2018. The effect of swing leg retraction on biped walking stability is influenced by the walking speed and step-length. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain 01 - 05 Oct 2018 IEEE. pp. 3257-3262 https://doi.org/10.1109/IROS.2018.8593932
Wrist movement detector for ROS based control of the robotic hand
Krawczyk, M., Yang, Z., Gandhi, V., Karamanoglu, M., Franca, F., Priscila, L., Xiaochen, W. and Geng, T. 2018. Wrist movement detector for ROS based control of the robotic hand. Advances in Robotics & Automation. 7 (1). https://doi.org/10.4172/2168-9695.1000182
ROS based autonomous control of a humanoid robot
Kalyani, G., Gandhi, V., Yang, Z. and Geng, T. 2016. ROS based autonomous control of a humanoid robot. 25th International Conference on Artificial Neural Networks (ICANN). Barcelona, Spain 06 - 09 Sep 2016 Springer. pp. 550-551 https://doi.org/10.1007/978-3-319-44778-0
Fast walking with rhythmic sway of torso in a 2D passive ankle walker
Bao, R. and Geng, T. 2018. Fast walking with rhythmic sway of torso in a 2D passive ankle walker. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain 01 - 05 Oct 2018 IEEE. pp. 4363-4368 https://doi.org/10.1109/IROS.2018.8593665
Using robot operating system (ROS) and single board computer to control bioloid robot motion
Kalyani, G., Yang, Z., Gandhi, V. and Geng, T. 2017. Using robot operating system (ROS) and single board computer to control bioloid robot motion. 18th Towards Autonomous Robotic Systems (TAROS) Conference. Guildford, Surrey, UK 19 - 21 Jul 2017 Springer. pp. 41-50 https://doi.org/10.1007/978-3-319-64107-2_4
Dynamics and trajectory planning of a planar flipping robot
Geng, T. 2005. Dynamics and trajectory planning of a planar flipping robot. Mechanics Research Communications. 32 (6), pp. 636-644. https://doi.org/10.1016/j.mechrescom.2004.06.009
A reflexive neural network for dynamic biped walking control
Geng, T., Porr, B. and Wörgötter, F. 2006. A reflexive neural network for dynamic biped walking control. Neural Computation. 18 (5), pp. 1156-1196. https://doi.org/10.1162/089976606776241057
Fast biped walking with a sensor-driven neuronal controller and real-time online learning
Geng, T. 2006. Fast biped walking with a sensor-driven neuronal controller and real-time online learning. The International Journal of Robotics Research. 25 (3), pp. 243-259. https://doi.org/10.1177/0278364906063822
A novel design of 4-class BCI using two binary classifiers and parallel mental tasks
Geng, T., Gan, J., Dyson, M., Tsui, C. and Sepulveda, F. 2008. A novel design of 4-class BCI using two binary classifiers and parallel mental tasks. Computational Intelligence and Neuroscience. 2008, pp. 1-5. https://doi.org/10.1155/2008/437306
A self-paced online BCI for mobile robot control
Geng, T., Gan, J. and Hu, H. 2010. A self-paced online BCI for mobile robot control. International Journal of Advanced Mechatronic Systems. 2 (1/2), p. 28. https://doi.org/10.1504/IJAMECHS.2010.030846
Planar biped walking with an equilibrium point controller and state machines
Geng, T. and Gan, J. 2010. Planar biped walking with an equilibrium point controller and state machines. IEEE/ASME transactions on mechatronics. 15 (2), pp. 253-260. https://doi.org/10.1109/TMECH.2009.2024742
Transferring human grasping synergies to a robot
Geng, T., Lee, M. and Hülse, M. 2011. Transferring human grasping synergies to a robot. Mechatronics. 21 (1), pp. 272-284. https://doi.org/10.1016/j.mechatronics.2010.11.003
Synergy-based affordance learning for robotic grasping
Geng, T., Wilson, J., Sheldon, M., Lee, M. and Hülse, M. 2013. Synergy-based affordance learning for robotic grasping. Robotics and Autonomous Systems. 61 (12), pp. 1626-1640. https://doi.org/10.1016/j.robot.2013.07.002
Online regulation of the walking speed of a planar limit cycle walker via model predictive control
Geng, T. 2014. Online regulation of the walking speed of a planar limit cycle walker via model predictive control. IEEE Transactions on Industrial Electronics. 61 (5), pp. 2326-2333. https://doi.org/10.1109/TIE.2013.2272274
A unified system identification approach for a class of pneumatically-driven soft actuators
Wang, X., Geng, T., Elsayed, Y., Saaj, C. and Lekakou, C. 2015. A unified system identification approach for a class of pneumatically-driven soft actuators. Robotics and Autonomous Systems. 63, pp. 136-149. https://doi.org/10.1016/j.robot.2014.08.017
Skins and sleeves for soft robotics: inspiration from nature and architecture
Lekakou, C., Elsayed, Y., Geng, T. and Saaj, C. 2015. Skins and sleeves for soft robotics: inspiration from nature and architecture. Advanced Engineering Materials. 17 (8), pp. 1180-1188. https://doi.org/10.1002/adem.201400406
Torso inclination enables faster walking in a planar biped robot with passive ankles
Geng, T. 2014. Torso inclination enables faster walking in a planar biped robot with passive ankles. IEEE Transactions on Robotics. 30 (3), pp. 753-758. https://doi.org/10.1109/TRO.2014.2298058
Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications
Elsayed, Y., Vincensi, A., Lekakou, C., Geng, T., Saaj, C., Ranzani, T., Cianchetti, M. and Menciassi, A. 2014. Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robotics. 1 (4), pp. 255-262. https://doi.org/10.1089/soro.2014.0016