Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications

Article


Elsayed, Y., Vincensi, A., Lekakou, C., Geng, T., Saaj, C., Ranzani, T., Cianchetti, M. and Menciassi, A. 2014. Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robotics. 1 (4), pp. 255-262. https://doi.org/10.1089/soro.2014.0016
TypeArticle
TitleFinite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications
AuthorsElsayed, Y., Vincensi, A., Lekakou, C., Geng, T., Saaj, C., Ranzani, T., Cianchetti, M. and Menciassi, A.
Abstract

The design of a pneumatically actuated silicone module, resembling soft tissue, with three pneumatic chambers is considered and optimized in this study with the aim of using it in a soft robot arm for robotic surgery applications. Three types of silicone materials, Ecoflex 0030 and 0050 and Dragonskin 0030, have been investigated, and a constitutive model has been derived for each of them. Design optimization of the silicone module was based on finite element analysis (FEA) that was validated against experimental data of one-degree bending under one-channel actuation. This was followed by FEA parametric studies for module design optimization to minimize the ballooning effect in one-degree bending as well as reduce the actuation pressure. Modules made from Ecoflex 0030 and Ecoflex 0050 exhibited the same bending shape in FEA, but about three times higher actuation pressure was required for the harder Ecoflex 0050. Design parameters under investigation in the parametric FEA studies included the shape of the pneumatic channel cross section, the ratio of channel length to module length, the distance of channel from the module wall, and the ratio of channel to module cross-sectional area. After FEA design optimization yielded least ballooning for pneumatic chambers of semicircular cross section, an internal dragonskin structure was added internally below the module surface to enable and guide the bending under one-channel pneumatic actuation and further contain the ballooning effect: the benefits of this design were successfully verified under both FEA and experimental analysis.

PublisherMary Ann Liebert
JournalSoft Robotics
ISSN2169-5172
Electronic2169-5180
Publication dates
Online31 Oct 2014
Print23 Dec 2014
Publication process dates
Deposited26 May 2015
Output statusPublished
Digital Object Identifier (DOI)https://doi.org/10.1089/soro.2014.0016
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/85666

  • 55
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

The effect of swing leg retraction on biped walking stability is influenced by the walking speed and step-length
Bao, R. and Geng, T. 2018. The effect of swing leg retraction on biped walking stability is influenced by the walking speed and step-length. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain 01 - 05 Oct 2018 IEEE. pp. 3257-3262 https://doi.org/10.1109/IROS.2018.8593932
Wrist movement detector for ROS based control of the robotic hand
Krawczyk, M., Yang, Z., Gandhi, V., Karamanoglu, M., Franca, F., Priscila, L., Xiaochen, W. and Geng, T. 2018. Wrist movement detector for ROS based control of the robotic hand. Advances in Robotics & Automation. 7 (1). https://doi.org/10.4172/2168-9695.1000182
ROS based autonomous control of a humanoid robot
Kalyani, G., Gandhi, V., Yang, Z. and Geng, T. 2016. ROS based autonomous control of a humanoid robot. 25th International Conference on Artificial Neural Networks (ICANN). Barcelona, Spain 06 - 09 Sep 2016 Springer. pp. 550-551 https://doi.org/10.1007/978-3-319-44778-0
Fast walking with rhythmic sway of torso in a 2D passive ankle walker
Bao, R. and Geng, T. 2018. Fast walking with rhythmic sway of torso in a 2D passive ankle walker. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain 01 - 05 Oct 2018 IEEE. pp. 4363-4368 https://doi.org/10.1109/IROS.2018.8593665
Using robot operating system (ROS) and single board computer to control bioloid robot motion
Kalyani, G., Yang, Z., Gandhi, V. and Geng, T. 2017. Using robot operating system (ROS) and single board computer to control bioloid robot motion. 18th Towards Autonomous Robotic Systems (TAROS) Conference. Guildford, Surrey, UK 19 - 21 Jul 2017 Springer. pp. 41-50 https://doi.org/10.1007/978-3-319-64107-2_4
Dynamics and trajectory planning of a planar flipping robot
Geng, T. 2005. Dynamics and trajectory planning of a planar flipping robot. Mechanics Research Communications. 32 (6), pp. 636-644. https://doi.org/10.1016/j.mechrescom.2004.06.009
A reflexive neural network for dynamic biped walking control
Geng, T., Porr, B. and Wörgötter, F. 2006. A reflexive neural network for dynamic biped walking control. Neural Computation. 18 (5), pp. 1156-1196. https://doi.org/10.1162/089976606776241057
Fast biped walking with a sensor-driven neuronal controller and real-time online learning
Geng, T. 2006. Fast biped walking with a sensor-driven neuronal controller and real-time online learning. The International Journal of Robotics Research. 25 (3), pp. 243-259. https://doi.org/10.1177/0278364906063822
Adaptive, fast walking in a biped robot under neuronal control and learning
Manoonpong, P., Geng, T., Kulvicius, T., Porr, B. and Wörgötter, F. 2007. Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Computational Biology. 3 (7), p. e134. https://doi.org/10.1371/journal.pcbi.0030134
A novel design of 4-class BCI using two binary classifiers and parallel mental tasks
Geng, T., Gan, J., Dyson, M., Tsui, C. and Sepulveda, F. 2008. A novel design of 4-class BCI using two binary classifiers and parallel mental tasks. Computational Intelligence and Neuroscience. 2008, pp. 1-5. https://doi.org/10.1155/2008/437306
A self-paced online BCI for mobile robot control
Geng, T., Gan, J. and Hu, H. 2010. A self-paced online BCI for mobile robot control. International Journal of Advanced Mechatronic Systems. 2 (1/2), p. 28. https://doi.org/10.1504/IJAMECHS.2010.030846
Planar biped walking with an equilibrium point controller and state machines
Geng, T. and Gan, J. 2010. Planar biped walking with an equilibrium point controller and state machines. IEEE/ASME transactions on mechatronics. 15 (2), pp. 253-260. https://doi.org/10.1109/TMECH.2009.2024742
Transferring human grasping synergies to a robot
Geng, T., Lee, M. and Hülse, M. 2011. Transferring human grasping synergies to a robot. Mechatronics. 21 (1), pp. 272-284. https://doi.org/10.1016/j.mechatronics.2010.11.003
Synergy-based affordance learning for robotic grasping
Geng, T., Wilson, J., Sheldon, M., Lee, M. and Hülse, M. 2013. Synergy-based affordance learning for robotic grasping. Robotics and Autonomous Systems. 61 (12), pp. 1626-1640. https://doi.org/10.1016/j.robot.2013.07.002
Online regulation of the walking speed of a planar limit cycle walker via model predictive control
Geng, T. 2014. Online regulation of the walking speed of a planar limit cycle walker via model predictive control. IEEE Transactions on Industrial Electronics. 61 (5), pp. 2326-2333. https://doi.org/10.1109/TIE.2013.2272274
A unified system identification approach for a class of pneumatically-driven soft actuators
Wang, X., Geng, T., Elsayed, Y., Saaj, C. and Lekakou, C. 2015. A unified system identification approach for a class of pneumatically-driven soft actuators. Robotics and Autonomous Systems. 63, pp. 136-149. https://doi.org/10.1016/j.robot.2014.08.017
Skins and sleeves for soft robotics: inspiration from nature and architecture
Lekakou, C., Elsayed, Y., Geng, T. and Saaj, C. 2015. Skins and sleeves for soft robotics: inspiration from nature and architecture. Advanced Engineering Materials. 17 (8), pp. 1180-1188. https://doi.org/10.1002/adem.201400406
Torso inclination enables faster walking in a planar biped robot with passive ankles
Geng, T. 2014. Torso inclination enables faster walking in a planar biped robot with passive ankles. IEEE Transactions on Robotics. 30 (3), pp. 753-758. https://doi.org/10.1109/TRO.2014.2298058