On the morphological deviation in additive manufacturing of porous Ti6Al4V scaffold: a design consideration

Article


Naghavi, S., Wang, H., Varma, S., Tamaddon, M., Marghoub, A., Galbraith, R., Galbraith, J., Moazen, M., Hua, J., Xu, W. and Liu, C. 2022. On the morphological deviation in additive manufacturing of porous Ti6Al4V scaffold: a design consideration. Materials. 15 (14). https://doi.org/10.3390/ma15144729
TypeArticle
TitleOn the morphological deviation in additive manufacturing of porous Ti6Al4V scaffold: a design consideration
AuthorsNaghavi, S., Wang, H., Varma, S., Tamaddon, M., Marghoub, A., Galbraith, R., Galbraith, J., Moazen, M., Hua, J., Xu, W. and Liu, C.
Abstract

Additively manufactured Ti scaffolds have been used for bone replacement and orthopaedic applications. In these applications, both morphological and mechanical properties are important for their in vivo performance. Additively manufactured Ti6Al4V triply periodic minimal surface (TPMS) scaffolds with diamond and gyroid structures are known to have high stiffness and high osseointegration properties, respectively. However, morphological deviations between the as-designed and as-built types of these scaffolds have not been studied before. In this study, the morphological and mechanical properties of diamond and gyroid scaffolds at macro and microscales were examined. The results demonstrated that the mean printed strut thickness was greater than the designed target value. For diamond scaffolds, the deviation increased from 7.5 μm (2.5% excess) for vertical struts to 105.4 μm (35.1% excess) for horizontal struts. For the gyroid design, the corresponding deviations were larger, ranging from 12.6 μm (4.2% excess) to 198.6 μm (66.2% excess). The mean printed pore size was less than the designed target value. For diamonds, the deviation of the mean pore size from the designed value increased from 33.1 μm (-3.0% excess) for vertical struts to 92.8 μm (-8.4% excess) for horizontal struts. The corresponding deviation for gyroids was larger, ranging from 23.8 μm (-3.0% excess) to 168.7 μm (-21.1% excess). Compressive Young's modulus of the bulk sample, gyroid and diamond scaffolds was calculated to be 35.8 GPa, 6.81 GPa and 7.59 GPa, respectively, via the global compression method. The corresponding yield strength of the samples was measured to be 1012, 108 and 134 MPa. Average microhardness and Young's modulus from α and β phases of Ti6Al4V from scaffold struts were calculated to be 4.1 GPa and 131 GPa, respectively. The extracted morphology and mechanical properties in this study could help understand the deviation between the as-design and as-built matrices, which could help develop a design compensation strategy before the fabrication of the scaffolds.

Keywordsadditive manufacturing; geometry deviation; mechanical properties; nanoindentation; surface roughness; Ti6Al4V scaffolds; bone scaffolds
PublisherMDPI
JournalMaterials
ISSN
Electronic1996-1944
Publication dates
Print06 Jul 2022
Online06 Jul 2022
Publication process dates
Deposited16 Aug 2022
Submitted08 Jun 2022
Accepted03 Jul 2022
Output statusPublished
Publisher's version
License
File Access Level
Open
Copyright Statement

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Additional information

This article belongs to the Special Issue: Design and Application of Additive Manufacturing: Volume II

Digital Object Identifier (DOI)https://doi.org/10.3390/ma15144729
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/89y3x

Download files


Publisher's version
materials-15-04729-v2.pdf
License: CC BY 4.0
File access level: Open

  • 61
    total views
  • 20
    total downloads
  • 7
    views this month
  • 4
    downloads this month

Export as

Related outputs

Stress shielding and bone resorption of press-fit polyether-ether-ketone (PEEK) hip prosthesis: a sawbone model study
Naghavi, S., Lin, C., Sun, C., Tamaddon, M., Basiouny, M., Garcia-Souto, P., Taylor, S., Hua, J., Li, D., Wang, L. and Liu, C. 2022. Stress shielding and bone resorption of press-fit polyether-ether-ketone (PEEK) hip prosthesis: a sawbone model study. Polymers. 14 (21). https://doi.org/10.3390/polym14214600
Screen key genes associated with distraction-induced osteogenesis of stem cells using bioinformatics methods
Chen, J., Hua, J. and Song, W. 2021. Screen key genes associated with distraction-induced osteogenesis of stem cells using bioinformatics methods. International Journal of Molecular Sciences. 22 (12). https://doi.org/10.3390/ijms22126505
Long-term dynamic compression enhancement TGF-β3-induced chondrogenesis in bovine stem cells: a gene expression analysis
Chen, J., Chen, L., Hua, J. and Song, W. 2021. Long-term dynamic compression enhancement TGF-β3-induced chondrogenesis in bovine stem cells: a gene expression analysis. BMC Genomic Data. 22 (1), pp. 1-12. https://doi.org/10.1186/s12863-021-00967-2
Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants
García-Gareta, E., Hua, J., Orera, A., Kohli, N., Knowles, J. and Blunn, G. 2017. Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants. Biomedical Materials. 13 (1). https://doi.org/10.1088/1748-605X/aa87e6
Calculating the hip centre of rotation using contralateral pelvic anatomy
Durand-Hill, M., Henckel, J., Satchithananda, K., Sabah, S., Hua, J., Hothi, H., Langstaff, R., Skinner, J. and Hart, A. 2016. Calculating the hip centre of rotation using contralateral pelvic anatomy. Journal of Orthopaedic Research. 34 (6), pp. 1077-1083. https://doi.org/10.1002/jor.23118
The effect of a lateral flare feature on uncemented hip stems
Walker, P., Culligan, S., Hua, J., Muirhead-Allwood, S. and Bentley, G. 1999. The effect of a lateral flare feature on uncemented hip stems. Hip international : the journal of clinical and experimental research on hip pathology and therapy. 9 (2), pp. 71-80. https://doi.org/10.1177/112070009900900210
The rationale for CAD-CAM uncemented custom hips: an interim assessment
Hua, J., Walker, P., Muirhead-Allwood, S., Bentley, G. and McCullough, C. 1995. The rationale for CAD-CAM uncemented custom hips: an interim assessment. Hip international : the journal of clinical and experimental research on hip pathology and therapy. 5 (2), pp. 52-62.
The effect of implant stiffness on the osseointegration of titanium alloy
Blunn, G., Hua, J., Hunter, A., Wait, M. and Walker, P. 1992. The effect of implant stiffness on the osseointegration of titanium alloy. in: Doherty, P., Williams, R. and Williams, D. (ed.) Biomaterial-Tissue Interfaces : proceedings of the Ninth European Conference on Biomaterials, Chester, U.K., September 9-11, 1991 Amsterdam Elsevier Science Publishers.
Correlation of stress distribution with bony remodelling in retrieved femora with proximal femoral replacements
Blunn, G., Hua, J., Wait, M. and Walker, P. 1991. Correlation of stress distribution with bony remodelling in retrieved femora with proximal femoral replacements. in: Brown, K. (ed.) Complications of Limb Salvage: Prevention, Management and Outcome: 6th International Symposium, Montreal, September 8 to 11, 1991 Montreal Intl Society of Limb Salvage (ISOLS). pp. 445-450
A comparison of cortical strain following cemented and uncemented proximal and distal femoral replacement
Hua, J. and Walker, P. 1991. A comparison of cortical strain following cemented and uncemented proximal and distal femoral replacement. in: Complications of Limb Salvage: Prevention, Management and Outcome: 6th International Symposium, Montreal, September 8 to 11, 1991 Montreal Intl Society of Limb Salvage (ISOLS). pp. 455-460
Preoperative simulation system for the ZCHW custom hip prosthesis and its usage through the internet
Iguchi, H., Tanaka, N., Yoshida, Y., Kawanishi, T., Taneda, Y., Matsui, N., Hua, J. and Hattori, Y. 2001. Preoperative simulation system for the ZCHW custom hip prosthesis and its usage through the internet. in: Matsui, N., Taneda, Y. and Yoshida, Y. (ed.) Arthroplasty 2000: Recent advances in total joint replacement Springer-Verlag, Tokyo. pp. 91-97
A comparison of cortical strain after cemented and press-fit proximal and distal femoral replacement
Hua, J. and Walker, P. 1992. A comparison of cortical strain after cemented and press-fit proximal and distal femoral replacement. Journal of Orthopaedic Research. 10 (5), pp. 739-744. https://doi.org/10.1002/jor.1100100516
Relative motion of hip stems under load. An in vitro study of symmetrical, asymmetrical, and custom asymmetrical designs
Hua, J. and Walker, P. 1994. Relative motion of hip stems under load. An in vitro study of symmetrical, asymmetrical, and custom asymmetrical designs. The Journal of Bone and Joint Surgery. American Volume. 76 (1), pp. 95-103. https://doi.org/10.2106/00004623-199401000-00012
Prediction of clinical outcome of THR from migration measurements on standard radiographs. A study of cemented Charnley and Stanmore femoral stems
Walker, P., Mai, S., Cobb, A., Bentley, G. and Hua, J. 1995. Prediction of clinical outcome of THR from migration measurements on standard radiographs. A study of cemented Charnley and Stanmore femoral stems. Journal of Bone and Joint Surgery, British Volume. 77-B (5), pp. 705-714. https://doi.org/10.1302/0301-620X.77B5.7559694
Uncemented total hip arthroplasty with subtrochanteric derotational osteotomy for severe femoral anteversion
Zadeh, H., Hua, J., Walker, P. and Muirhead-Allwood, S. 1999. Uncemented total hip arthroplasty with subtrochanteric derotational osteotomy for severe femoral anteversion. The Journal of Arthroplasty. 14 (6), pp. 682-688. https://doi.org/10.1016/S0883-5403(99)90223-1
Closeness of fit of uncemented stems improves the strain distribution in the femur
Hua, J. and Walker, P. 1995. Closeness of fit of uncemented stems improves the strain distribution in the femur. Journal of Orthopaedic Research. 13 (3), pp. 339-346. https://doi.org/10.1002/jor.1100130307
Accuracy of using radiographs for custom hip stem design
Iguchi, H., Hua, J. and Walker, P. 1996. Accuracy of using radiographs for custom hip stem design. The Journal of Arthroplasty. 11 (3), pp. 312-321. https://doi.org/10.1016/S0883-5403(96)80084-2
Migration of the uncemented CLS acetabular component
Davies, M., Parker, B., Ward, D., Hern, E., Hua, J. and Walker, P. 1999. Migration of the uncemented CLS acetabular component. Orthopedics. 22 (2), pp. 219-222. https://doi.org/10.3928/0147-7447-19990201-11
Migration of the uncemented CLS femoral component
Davies, M., Parker, B., Ward, D., Hua, J. and Walker, P. 1999. Migration of the uncemented CLS femoral component. Orthopedics. 22 (2), pp. 225-228. https://doi.org/10.3928/0147-7447-19990201-12
Stability and bone preservation in custom designed revision hip stems
Walker, P., Culligan, S., Hua, J., Muirhead-Allwood, S. and Bentley, G. 2000. Stability and bone preservation in custom designed revision hip stems. Clinical Orthopaedics and Related Research. 373, pp. 164-173. https://doi.org/10.1097/00003086-200004000-00020
Can mesenchymal stem cells survive under normal impaction force in revision total hip replacements?
Korda, M., Blunn, G., Phipps, K., Rust, P., Di Silvio, L., Coathup, M., Goodship, A. and Hua, J. 2006. Can mesenchymal stem cells survive under normal impaction force in revision total hip replacements? Tissue engineering. 12 (3), pp. 625-630. https://doi.org/10.1089/ten.2006.12.625
Correlation of radiographic and telemetric data from massive implant fixations
Shah, A., Taylor, S. and Hua, J. 2006. Correlation of radiographic and telemetric data from massive implant fixations. Journal of Biomechanics. 39 (7), pp. 1304-1314. https://doi.org/10.1016/j.jbiomech.2005.03.023
Use of mesenchymal stem cells to enhance bone formation around revision hip replacements
Korda, M., Blunn, G., Goodship, A. and Hua, J. 2008. Use of mesenchymal stem cells to enhance bone formation around revision hip replacements. Journal of Orthopaedic Research. 26 (6), pp. 880-885. https://doi.org/10.1002/jor.20598
Custom uncemented revision stems based on a femoral classification
Hua, J., Walker, P., Muirhead-Allwood, S., Engelhardt, F. and Bentley, G. 2010. Custom uncemented revision stems based on a femoral classification. Hip international : the journal of clinical and experimental research on hip pathology and therapy. 20 (1), pp. 18-25. https://doi.org/10.1177/112070001002000103
Comparison of mesenchymal stem cell proliferation and differentiation between biomimetic and electrochemical coatings on different topographic surfaces
García-Gareta, E., Hua, J., Knowles, J. and Blunn, G. 2013. Comparison of mesenchymal stem cell proliferation and differentiation between biomimetic and electrochemical coatings on different topographic surfaces. Journal of Materials Science: Materials in Medicine. 24 (1), pp. 199-210. https://doi.org/10.1007/s10856-012-4789-x
The effect of temperature on the viability of human mesenchymal stem cells
Reissis, Y., García-Gareta, E., Korda, M., Blunn, G. and Hua, J. 2013. The effect of temperature on the viability of human mesenchymal stem cells. Stem Cell Research & Therapy. 4 (6), p. 139. https://doi.org/10.1186/scrt350
Enhanced wear and corrosion in modular tapers in total hip replacement is associated with the contact area and surface topography
Panagiotidou, A., Meswania, J., Hua, J., Muirhead-Allwood, S., Hart, A. and Blunn, G. 2013. Enhanced wear and corrosion in modular tapers in total hip replacement is associated with the contact area and surface topography. Journal of Orthopaedic Research. 31 (12), pp. 2032-2039. https://doi.org/10.1002/jor.22461
Muscle atrophy and metal-on-metal hip implants
Berber, R., Khoo, M., Cook, E., Guppy, A., Hua, J., Miles, J., Carrington, R., Skinner, J. and Hart, A. 2015. Muscle atrophy and metal-on-metal hip implants. Acta Orthopaedica. 86 (3), pp. 351-357. https://doi.org/10.3109/17453674.2015.1006981
Clinical usefulness of SPECT–CT in patients with an unexplained pain in metal on metal (MOM) total hip arthroplasty
Berber, R., Henckel, J., Khoo, M., Wan, S., Hua, J., Skinner, J. and Hart, A. 2015. Clinical usefulness of SPECT–CT in patients with an unexplained pain in metal on metal (MOM) total hip arthroplasty. The Journal of Arthroplasty. 30 (4), pp. 687-694. https://doi.org/10.1016/j.arth.2014.11.019
Osseointegration of acellular and cellularized osteoconductive scaffolds: is tissue engineering using mesenchymal stem cells necessary for implant fixation?
García-Gareta, E., Hua, J. and Blunn, G. 2015. Osseointegration of acellular and cellularized osteoconductive scaffolds: is tissue engineering using mesenchymal stem cells necessary for implant fixation? Journal of Biomedical Materials Research Part A. 103 (3), pp. 1067-1076. https://doi.org/10.1002/jbm.a.35256
Mesenchymal stem cells with increased stromal cell-derived factor 1 expression enhanced fracture healing
Ho, C., Sanghani, A., Hua, J., Coathup, M., Kalia, P. and Blunn, G. 2015. Mesenchymal stem cells with increased stromal cell-derived factor 1 expression enhanced fracture healing. Tissue Engineering Part A. 21 (3-4), pp. 594-602. https://doi.org/10.1089/ten.tea.2013.0762
Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty
García-Gareta, E., Hua, J., Rayan, F. and Blunn, G. 2014. Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty. Journal of Materials Science: Materials in Medicine. 25 (6), pp. 1553-1562. https://doi.org/10.1007/s10856-014-5170-z
The effect of mesenchymal stromal cells on the osseoinduction of impaction grafts
Korda, M., Hua, J., Little, N., Heidari, N. and Blunn, G. 2010. The effect of mesenchymal stromal cells on the osseoinduction of impaction grafts. Tissue Engineering Part A. 16 (2), pp. 675-683. https://doi.org/10.1089/ten.TEA.2008.0643
Uncemented computer-assisted design-computer-assisted manufacture femoral components in revision total hip replacement: a minimum follow up of ten years
Muirhead-Allwood, S., Sandiford, N., Skinner, J., Hua, J., Muirhead, W., Kabir, C. and Walker, P. 2010. Uncemented computer-assisted design-computer-assisted manufacture femoral components in revision total hip replacement: a minimum follow up of ten years. Journal of Bone and Joint Surgery, British Volume. 92-B (10), pp. 1370-1375. https://doi.org/10.1302/0301-620X.92B10.23124
The use of hydroxyapatite-coated CAD-CAM femoral components in adolescents and young adults with inflammatory polyarthropathy: ten-year results
McCullough, C., Remedios, D., Tytherleigh-Strong, G., Hua, J. and Walker, P. 2006. The use of hydroxyapatite-coated CAD-CAM femoral components in adolescents and young adults with inflammatory polyarthropathy: ten-year results. Journal of Bone and Joint Surgery, British Volume. 88-B (7), pp. 860-864. https://doi.org/10.1302/0301-620x.88b7.17046