Associative memory with biologically-inspired cell assemblies

Conference paper


Ji, Y., Gamez, D. and Huyck, C. 2024. Associative memory with biologically-inspired cell assemblies. Samsonovich, A.V. and Liu, T. (ed.) 2023 Annual International Conference on Brain-Inspired Cognitive Architectures for Artificial Intelligence, the 14th Annual Meeting of the BICA Society (BICA*AI 2023). Ningbo, China 13 - 15 Oct 2023 Springer. pp. 422-428 https://doi.org/10.1007/978-3-031-50381-8_43
TypeConference paper
TitleAssociative memory with biologically-inspired cell assemblies
AuthorsJi, Y., Gamez, D. and Huyck, C.
Abstract

Associative memory is a central cognitive task. However, the actual biological architecture that supports this memory is not currently known, so simulating with biologically plausible neurons and topologies is an ideal mechanism to improve understanding of associative memory. Simulations of spiking networks that per-form associative memory tasks lay the groundwork for utilizing biological neurons in cognitive tasks. Specifically, this paper explores simulations of spiking networks that perform associative memory tasks using Hebbian cell assemblies of neurons to represent nodes and synapses to represent associations. The first tasks use binary cell assemblies to perform two well-known cognitive tasks. Then the paper examines different topologies of excitatory neurons for basic assemblies and their performance as short-term memory. Lastly, larger assemblies are associated in 2/3 sets, where two active elements can retrieve the third. Future research is proposed to explore the potential use of these assemblies and associations in cognitive tasks. By investigating biologically and cognitively plausible topologies, learning, and neurons, simulations will lead to an improved under-standing of neuro-cognition, and potentially to systems that surpass the brittleness and domain specificity of current AI systems.

KeywordsCell Assemblies; Neurocognitive Model; Stroop Task; Associative Memory; Spiking Network
Sustainable Development Goals16 Peace, justice and strong institutions
Middlesex University ThemeHealth & Wellbeing
Research GroupArtificial Intelligence group
Conference2023 Annual International Conference on Brain-Inspired Cognitive Architectures for Artificial Intelligence, the 14th Annual Meeting of the BICA Society (BICA*AI 2023)
Page range422-428
Proceedings TitleBiologically Inspired Cognitive Architectures 2023: Proceedings of the 14th Annual Meeting of the BICA Society
SeriesStudies in Computational Intelligence series
EditorsSamsonovich, A.V. and Liu, T.
ISSN1860-949X
1860-9503
ISBN9783031503801
Paperback9783031503832
Electronic9783031503818
PublisherSpringer
Publication dates
Online14 Feb 2024
Print14 Feb 2024
Publication process dates
Accepted15 Jun 2023
Deposited17 Aug 2023
Output statusPublished
Accepted author manuscript
File Access Level
Open
Copyright Statement

This version of the paper has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-ma...), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-50381-8_43

Digital Object Identifier (DOI)https://doi.org/10.1007/978-3-031-50381-8_43
Web address (URL) of conference proceedingshttps://link.springer.com/book/9783031503801
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/9xqq5

Restricted files

Accepted author manuscript

  • 203
    total views
  • 6
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Export as

Related outputs

Quasi Biologically Plausible Category Learning
Huyck, C. 2024. Quasi Biologically Plausible Category Learning. 44th SGAI International Conference on Artificial Intelligence, AI 2024. Cambridge, UK 17 - 19 Dec 2024 Springer.
Parameter tuning of the Firefly Algorithm by standard Monte Carlo and Quasi-Monte Carlo methods
Joy, G., Huyck, C. and Yang, X. 2024. Parameter tuning of the Firefly Algorithm by standard Monte Carlo and Quasi-Monte Carlo methods. Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V., Dongarra, J. and Sloot, P. (ed.) 24th International Conference on Computational Science. Malaga, Spain 02 - 04 Jul 2024 Cham Springer. pp. 242–253 https://doi.org/10.1007/978-3-031-63775-9_17
A proposal for extending the Common Model of Cognition to emotion
Rosenbloom, P., Laird, J., Lebiere, C., Stocco, A., Granger, R. and Huyck, C. 2024. A proposal for extending the Common Model of Cognition to emotion. 22nd International Conference on Cognitive Modeling. Tilburg University, the Netherlands 19 - 22 Jul 2024
Enhancing individual UAV path planning with Parallel Multi-Swarm Treatment Coronavirus Herd Immunity Optimizer (PMST-CHIO) algorithm
Fouad, A., Abboudi, A., Huyck, C., Gao, X., Bououden, S., Khezami, N. and Shall, H. 2024. Enhancing individual UAV path planning with Parallel Multi-Swarm Treatment Coronavirus Herd Immunity Optimizer (PMST-CHIO) algorithm. IEEE Access. 12, pp. 28395-28416. https://doi.org/10.1109/ACCESS.2024.3367753
A spiking model of Cell Assemblies: Short term and associative memory
Huyck, C. 2023. A spiking model of Cell Assemblies: Short term and associative memory. Medical Research Archives. 11 (9), pp. 1-20. https://doi.org/10.18103/mra.v11i9.4406
Intelligence and consciousness in natural and artificial systems
Gamez, D. 2023. Intelligence and consciousness in natural and artificial systems. in: Chella, A. (ed.) Computational Approaches to Conscious Artificial Intelligence World Scientific Publishing Co. Pte Ltd.
Consciousness technology in Black Mirror. Do cookies feel pain?
Gamez, D. and Johnson, D. 2020. Consciousness technology in Black Mirror. Do cookies feel pain? in: Johnson, D. (ed.) Black Mirror and Philosophy WileyBlackwell. pp. 273-281
Bridging neuroscience and robotics: spiking neural networks in action
Jones, A., Gandhi, V., Mahiddine, A. and Huyck, C. 2023. Bridging neuroscience and robotics: spiking neural networks in action. Sensors. 23 (21), pp. 1-14. https://doi.org/10.3390/s23218880
Review of parameter tuning methods for nature-inspired algorithms
Joy, G., Huyck, C. and Yang, X. 2023. Review of parameter tuning methods for nature-inspired algorithms. in: Yang, X. (ed.) Benchmarks and Hybrid Algorithms in Optimization and Applications Singapore Springer. pp. 33-47
A.I.: Artificial Intelligence as philosophy: machine consciousness and intelligence
Gamez, D. 2023. A.I.: Artificial Intelligence as philosophy: machine consciousness and intelligence. in: Johnson, D., Kowalski, D., Lay, C. and Engels, K. (ed.) The Palgrave Handbook of Popular Culture as Philosophy Palgrave Macmillan.
Competitive learning with spiking nets and spike timing dependent plasticity
Huyck, C. and Orume, E. 2022. Competitive learning with spiking nets and spike timing dependent plasticity. Bramer, M. and Stahl, F. (ed.) AI-2022: The Forty-second SGAI International Conference. Cambridge, England, UK 13 - 15 Dec 2022 Springer. pp. 153-166 https://doi.org/10.1007/978-3-031-21441-7_11
Learning categories with spiking nets and spike timing dependent plasticity
Huyck, C. 2020. Learning categories with spiking nets and spike timing dependent plasticity. Bramer, M. and Ellis, R. (ed.) 40th SGAI 2020. Cambridge, UK 15 - 17 Dec 2020 Springer. pp. 139-144 https://doi.org/10.1007/978-3-030-63799-6_10
Cell Assembly-based Task Analysis (CAbTA)
Diaper, D. and Huyck, C. 2021. Cell Assembly-based Task Analysis (CAbTA). Arai, K. (ed.) Computing Conference 2021 (formerly called Science and Information (SAI) Conference). Virtual (from London, UK) 15 - 16 Jul 2021 Springer. https://doi.org/10.1007/978-3-030-80119-9_22
Measuring intelligence in natural and artificial systems
Gamez, D. 2021. Measuring intelligence in natural and artificial systems. Journal of Artificial Intelligence and Consciousness. 08 (02), pp. 285-302. https://doi.org/10.1142/s2705078521500090
Hot coffee: associative memory with bump attractor cell assemblies of spiking neurons
Huyck, C. and Vergani, A. 2020. Hot coffee: associative memory with bump attractor cell assemblies of spiking neurons. Journal of Computational Neuroscience. 48 (3), pp. 299-316. https://doi.org/10.1007/s10827-020-00758-1
The relationships between intelligence and consciousness in natural and artificial systems
Gamez, D. 2020. The relationships between intelligence and consciousness in natural and artificial systems. Journal of Artificial Intelligence and Consciousness. 7 (1), pp. 51-62. https://doi.org/10.1142/S2705078520300017
Are quiz-games an effective revision tool in Anatomical Sciences for Higher Education and what do students think of them?
Wilkinson, K., Dafoulas, G., Garelick, H. and Huyck, C. 2020. Are quiz-games an effective revision tool in Anatomical Sciences for Higher Education and what do students think of them? British Journal of Educational Technology. 51 (3), pp. 761-777. https://doi.org/10.1111/bjet.12883
A neural cognitive architecture
Huyck, C. 2020. A neural cognitive architecture. Cognitive Systems Research. 59, pp. 171-178. https://doi.org/10.1016/j.cogsys.2019.09.023
Four preconditions for solving MC4 machine consciousness
Gamez, D. 2019. Four preconditions for solving MC4 machine consciousness. Towards Conscious AI Systems Symposium co-located with the Association for the Advancement of Artificial Intelligence 2019 Spring Symposium Series (AAAI SSS-19). Stanford University, USA 25 - 27 Mar 2019 https://doi.org/urn:nbn:de:0074-2287-2
The intelligence of sheep
Gamez, D. 2019. The intelligence of sheep. Animal Sentience. 25 (27).
Fish consciousness [commentary on Woodruff on Fish Feel]
Gamez, D. 2018. Fish consciousness [commentary on Woodruff on Fish Feel]. Animal Sentience.
A brain-inspired cognitive system that mimics the dynamics of human thought
Ji, Y., Gamez, D. and Huyck, C. 2018. A brain-inspired cognitive system that mimics the dynamics of human thought. AI-2018 Thirty-eighth SGAI International Conference on Artificial Intelligence. Cambridge, UK 11 - 13 Dec 2018 Springer. pp. 50-62 https://doi.org/10.1007/978-3-030-04191-5_4
Two simple NeuroCognitive associative memory models
Huyck, C. and Ji, Y. 2018. Two simple NeuroCognitive associative memory models. International Conference on Cognitive Modeling 2018. Madison Wisconsin 20 - 24 Jul 2018 pp. 31-36
Implementing Rules with Aritificial Neurons
Huyck, C. and Kreivena, D. 2018. Implementing Rules with Aritificial Neurons. AI-2018 38th SGAI International Conference on Artificial Intelligence. Cambridge 11 - 13 Dec 2018 Springer. pp. 21-33 https://doi.org/10.1007/978-3-030-04191-5_2
Human and machine consciousness - a systematic approach
David Gamez 2018. Human and machine consciousness - a systematic approach. Open Book Publishers. https://doi.org/10.11647/OBP.0173.0081
Could neurolecturing address the limitations of live and recorded lectures?
Gamez, D. 2018. Could neurolecturing address the limitations of live and recorded lectures? Humana.Mente Journal of Philosophical Studies. 33, pp. 43-58.
A spiking half-cognitive model for classification
Huyck, C. and Kulkarni, R. 2018. A spiking half-cognitive model for classification. Connection Science. 30 (3), pp. 285-305. https://doi.org/10.1080/09540091.2018.1443317
CABots and other neural agents
Huyck, C. and Mitchell, I. 2018. CABots and other neural agents. Frontiers in Neurorobotics. 12, pp. 1-12. https://doi.org/10.3389/fnbot.2018.00079
Human and machine consciousness
Gamez, D. 2018. Human and machine consciousness. Cambridge, UK. Open Book Publishers.
The neural cognitive architecture
Huyck, C. 2017. The neural cognitive architecture. AAAI 2017 FALL Symposium Series: Symposium on A Standard Models of the Mind. Arlington, Virginia, USA 09 - 11 Nov 2017 Association for the Advancement of Artificial Intelligence (AAAI). pp. 365-370
Neuron-based control mechanisms for a robotic arm and hand
Singh, N., Huyck, C., Gandhi, V. and Jones, A. 2017. Neuron-based control mechanisms for a robotic arm and hand. International Journal of Computer, Electrical, Automation, Control and Information Engineering. 11 (2), pp. 221-229. https://doi.org/10.5281/zenodo.1128871
Programming a cognitive architecture with simulated neurons, Chris Eliasmith. How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford University Press, Oxford (2013). 456 pp., ISBN: 978-0-19-026212-9 [Book review]
Huyck, C. 2017. Programming a cognitive architecture with simulated neurons, Chris Eliasmith. How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford University Press, Oxford (2013). 456 pp., ISBN: 978-0-19-026212-9 [Book review]. Cognitive Systems Research. 41, pp. 36-37. https://doi.org/10.1016/j.cogsys.2016.09.002
Programming with simulated neurons: a first design pattern
Evans, C., Mitchell, I. and Huyck, C. 2016. Programming with simulated neurons: a first design pattern. PPIG 2016 - 27th Annual Workshop of the Psychology of Programming Interest Group. University of Cambridge, Cambridge, UK 07 - 10 Sep 2016 Psychology of Programming Interest Group. pp. 36-45
PlaNeural: spiking neural networks that plan
Mitchell, I., Huyck, C. and Evans, C. 2016. PlaNeural: spiking neural networks that plan. 7th Annual International Conference on Biologically Inspired Cognitive Architectures, BICA 2016. New York City, NY, USA 16 Jul 2016 Elsevier. pp. 198-204 https://doi.org/10.1016/j.procs.2016.07.425
Advancing ambient assisted living with caution
Huyck, C., Augusto, J., Gao, X. and Botia, J. 2015. Advancing ambient assisted living with caution. in: Helfert, M., Holzinger, A., Ziefle, M., Fred, A., O'Donoghue, J. and Röcker, C. (ed.) Information and Communication Technologies for Ageing Well and e-Health: First International Conference, ICT4AgeingWell 2015, Lisbon, Portugal, May 20-22, 2015. Revised Selected Papers Springer.
Neural constraints and flexibility in language processing
Huyck, C. 2016. Neural constraints and flexibility in language processing. Behavioral and Brain Sciences: An International Journal of Current Research and Theory with Open Peer Commentary. 39, p. e78. https://doi.org/10.1017/s0140525x15000837
Self organising maps with a point neuron model
Huyck, C. and Mitchell, I. 2013. Self organising maps with a point neuron model. Intl Conf. on Cognitive and Neural Systems.
A comparison of simple agents implemented in simulated neurons
Huyck, C., Evans, C. and Mitchell, I. 2015. A comparison of simple agents implemented in simulated neurons. Biologically Inspired Cognitive Architectures. 12, pp. 9-19. https://doi.org/10.1016/j.bica.2015.03.001
Programming the MIRTO robot with neurons
Huyck, C., Primiero, G. and Raimondi, F. 2014. Programming the MIRTO robot with neurons. Procedia Computer Science. 41, pp. 75-82. https://doi.org/10.1016/j.procs.2014.11.087
A neuro-computational approach to PP attachment ambiguity resolution
Nadh, K. and Huyck, C. 2012. A neuro-computational approach to PP attachment ambiguity resolution. Neural Computation. 24 (7), pp. 1906-1925. https://doi.org/10.1162/NECO_a_00298
A review of cell assemblies
Huyck, C. and Passmore, P. 2013. A review of cell assemblies. Biological Cybernetics. 107 (3), pp. 263-288. https://doi.org/10.1007/s00422-013-0555-5
Compensatory Hebbian learning for categorisation in simulated biological neural nets
Huyck, C. and Mitchell, I. 2013. Compensatory Hebbian learning for categorisation in simulated biological neural nets. Biologically Inspired Cognitive Architectures. 6 (5), pp. 3-7. https://doi.org/10.1016/j.bica.2013.06.003
Are information or data patterns correlated with consciousness?
Gamez, D. 2016. Are information or data patterns correlated with consciousness? Topoi. 35 (1), pp. 225-239. https://doi.org/10.1007/s11245-014-9246-7
Conscious sensation, conscious perception and sensorimotor theories of consciousness
Gamez, D. 2014. Conscious sensation, conscious perception and sensorimotor theories of consciousness. in: Bishop, J. and Martin, A. (ed.) Contemporary Sensorimotor Theory Cham Springer. pp. 159-174
The informational mind and the information integration theory of consciousness
Gamez, D. 2014. The informational mind and the information integration theory of consciousness. International Journal of Machine Consciousness. 6 (1), pp. 21-28. https://doi.org/10.1142/S1793843014400046
The measurement of consciousness: a framework for the scientific study of consciousness
Gamez, D. 2014. The measurement of consciousness: a framework for the scientific study of consciousness. Frontiers in Psychology. 5, pp. 1-15. https://doi.org/10.3389/fpsyg.2014.00714
Can we prove that there are computational correlates of consciousness in the brain?
Gamez, D. 2014. Can we prove that there are computational correlates of consciousness in the brain? Journal of Cognitive Science. 15 (2), pp. 149-186. https://doi.org/10.17791/jcs.2014.15.2.149
Post and pre-compensatory Hebbian Learning for categorisation
Huyck, C. and Mitchell, I. 2014. Post and pre-compensatory Hebbian Learning for categorisation. Cognitive Neurodynamics. 8 (4), pp. 299-311. https://doi.org/10.1007/s11571-014-9282-4
True global optimality of the pressure vessel design problem: a benchmark for bio-inspired optimisation algorithms
Yang, X., Huyck, C., Karamanoglu, M. and Khan, N. 2013. True global optimality of the pressure vessel design problem: a benchmark for bio-inspired optimisation algorithms. International Journal of Bio-Inspired Computation. 5 (6), pp. 329-335. https://doi.org/10.1504/IJBIC.2013.058910
Three tools for the real-time simulation of embodied spiking neural networks using GPUs
Fidjeland, A., Gamez, D., Shanahan, M. and Lazdins, E. 2013. Three tools for the real-time simulation of embodied spiking neural networks using GPUs. Neuroinformatics. 11 (3), pp. 267-290. https://doi.org/10.1007/s12021-012-9174-x
From baconian to popperian neuroscience
Gamez, D. 2012. From baconian to popperian neuroscience. Neural Systems and Circuits. 2. https://doi.org/10.1186/2042-1001-2-2
A neuronal global workspace for human-like control of a computer game character
Fountas, Z., Gamez, D. and Fidjeland, A. 2011. A neuronal global workspace for human-like control of a computer game character. 2011 IEEE Conference on Computational Intelligence and Games. Seoul, South Korea 31 Aug - 03 Sep 2011 IEEE.
Cell assemblies for query expansion in information retrieval
Volpe, I., Moreira, V. and Huyck, C. 2011. Cell assemblies for query expansion in information retrieval. 2011 International Joint Conference on Neural Networks (IJCNN). San Jose, CA, USA 31 Jul - 05 Aug 2011 IEEE. pp. 551-558 https://doi.org/10.1109/IJCNN.2011.6033269
Conflict resolution and learning probability matching in a neural cell-assembly architecture
Belavkin, R. and Huyck, C. 2011. Conflict resolution and learning probability matching in a neural cell-assembly architecture. Cognitive Systems Research. 12 (2), pp. 93-101. https://doi.org/10.1016/j.cogsys.2010.08.003
A Pong playing agent modelled with massively overlapping cell assemblies
Nadh, K. and Huyck, C. 2010. A Pong playing agent modelled with massively overlapping cell assemblies. Neurocomputing. 73 (16-18), pp. 2928-2934. https://doi.org/10.1016/j.neucom.2010.07.013
Multi-associative memory in fLIF cell assemblies.
Huyck, C. and Nadh, K. 2009. Multi-associative memory in fLIF cell assemblies. 9th International Conference on Cognitive Modeling. Manchester 24 - 26 Jul 2009
Processing with cell assemblies
Byrne, E. and Huyck, C. 2010. Processing with cell assemblies. Neurocomputing. 74 (1-3), pp. 76-83. https://doi.org/10.1016/j.neucom.2009.09.024
Using cohesive devices to recognize rhetorical relations in text.
Le, H., Abeysinghe, G. and Huyck, C. 2003. Using cohesive devices to recognize rhetorical relations in text. 4th Computational Linguistics UK Research Colloquium (CLUK-4). Edinburgh University Jan 2003 pp. 123-128
Automated discourse segmentation by syntactic information and cue phrases.
Le, H., Abeysinghe, G. and Huyck, C. 2004. Automated discourse segmentation by syntactic information and cue phrases. IASTED International Conference on Artificial Intelligence and Applications (AIA 2004). Innsbruck, Austria 16 - 18 Feb 2004 pp. 293-298
Generating discourse structures for written texts
Le, H., Abeysinghe, G. and Huyck, C. 2004. Generating discourse structures for written texts. International Conference on Computational Linguistics, (COLING 2004). University of Geneva, Switzerland 23 - 27 Aug 2004 pp. 329-355
A study to improve the efficiency of a discourse parsing system
Le, H., Abeysinghe, G. and Huyck, C. 2003. A study to improve the efficiency of a discourse parsing system. 4th International Conference on Intelligent Text Processing and Computational Linguistics, (CICLing’03). Mexico City 16 - 22 Feb 2003 pp. 101-114
Emergence of rules in cell assemblies of fLIF neurons.
Belavkin, R. and Huyck, C. 2008. Emergence of rules in cell assemblies of fLIF neurons. The 18th European Conference on Artificial Intelligence. University of Patras, Greece 21 - 25 Jul 2008
A model of probability matching in a two-choice task based on stochastic control of learning in neural cell-assemblies.
Belavkin, R. and Huyck, C. 2009. A model of probability matching in a two-choice task based on stochastic control of learning in neural cell-assemblies. 9th International conference on cognitive modelling {ICCM 2009]. University of Manchester 24 - 26 Jul 2009
Models of cell assembly decay
Passmore, P. and Huyck, C. 2008. Models of cell assembly decay. Institute of Electrical and Electronics Engineers. pp. 1-6 https://doi.org/10.1109/UKRICIS.2008.4798946
Dialogue based interfaces for universal access.
Huyck, C. 2010. Dialogue based interfaces for universal access. Universal Access in the Information Society. https://doi.org/10.1007/s10209-010-0209-5
A psycholinguistic model of natural language parsing implemented in simulated neurons
Huyck, C. 2009. A psycholinguistic model of natural language parsing implemented in simulated neurons. Cognitive Neurodynamics. 3 (4), pp. 316-330. https://doi.org/10.1007/s11571-009-9080-6
Variable binding by synaptic strength change
Huyck, C. 2009. Variable binding by synaptic strength change. Connection Science. 21 (4), pp. 327-357. https://doi.org/10.1080/09540090902954188
Information integration based predictions about the conscious states of a spiking neural network
Gamez, D. 2010. Information integration based predictions about the conscious states of a spiking neural network. Consciousness and Cognition. 19 (1), pp. 294-310. https://doi.org/10.1016/j.concog.2009.11.001
Prepositional phrase attachment ambiguity resolution using semantic hierarchies
Nadh, K. and Huyck, C. 2009. Prepositional phrase attachment ambiguity resolution using semantic hierarchies. Hamza, M. (ed.) 9th IASTED International Conference on Artificial Intelligence and Applications. Innsbruck, Austria 17 - 18 Feb 2009 Acta Press.
Neural cell assemblies for practical applications.
Huyck, C. and Bavan, A. 2002. Neural cell assemblies for practical applications. in: Callaos, N. (ed.) SCI 2002: ISAS: the 6th world multiconference on systemics, cybernetics and informatics: proceedings. Orlando, Florida. International Institute of Informatics and Systemics.. pp. 174-177
Agent design method for enhancing accessibility.
Cook, J., Huyck, C. and Whitney, G. 2004. Agent design method for enhancing accessibility. in: McLoughlin, C. and Cantoni, L. (ed.) ED-MEDIA 2004: world conference on educational multimedia, hypermedia and telecommunications: proceedings of ED-MEDIA 2004. Association for the Advancement of Computing in Education.
Counting with neurons: rule application with nets of fatiguing leaking integrate and fire neurons.
Huyck, C. and Belavkin, R. 2006. Counting with neurons: rule application with nets of fatiguing leaking integrate and fire neurons. 7th International Conference on Cognitive Modelling. Trieste, Italy pp. 142-147
Progress in machine consciousness
Gamez, D. 2008. Progress in machine consciousness. Consciousness and Cognition. 17 (3), pp. 887-910. https://doi.org/10.1016/j.concog.2007.04.005
Creating hierarchical categories using cell assemblies
Huyck, C. 2007. Creating hierarchical categories using cell assemblies. Connection Science. 19 (1), pp. 1-24. https://doi.org/10.1080/09540090600779713
Relevance feedback and cross-language information retrieval
Orengo, V. and Huyck, C. 2006. Relevance feedback and cross-language information retrieval. Information Processing and Management. 42 (5), pp. 1203-1217. https://doi.org/10.1016/j.ipm.2005.12.003
Information retrieval and categorisation using a cell assembly network
Huyck, C. and Orengo, V. 2005. Information retrieval and categorisation using a cell assembly network. Neural Computing and Applications. 14 (4), pp. 282-289. https://doi.org/10.1007/s00521-004-0464-6
Overlapping cell assemblies from correlators
Huyck, C. 2004. Overlapping cell assemblies from correlators. Neural Computing Letters. 56, pp. 435-439. https://doi.org/10.1016/j.neucom.2003.08.003
Safeguarding SCADA systems with anomaly detection
Bigham, J., Gamez, D. and Lu, N. 2003. Safeguarding SCADA systems with anomaly detection. Gorodetsky, V., Popyack, L. and Skormin, V. (ed.) Second International Workshop on Mathematical Methods, Models, and Architectures for Computer Network Security. St. Petersburg, Russia 21 - 23 Sep 2003 Berlin, Heidelberg Springer. pp. 171-182 https://doi.org/10.1007/978-3-540-45215-7_14