The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation
Article
Yousif, N., Bayford, R. and Liu, X. 2008. The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation. Neuroscience. 156 (3), pp. 597-606. https://doi.org/10.1016/j.neuroscience.2008.07.051
Type | Article |
---|---|
Title | The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation |
Authors | Yousif, N., Bayford, R. and Liu, X. |
Abstract | The use of deep brain stimulation (DBS) as an effective clinical therapy for a number of neurological disorders has been greatly hindered by the lack of understanding of the mechanisms which underlie the observed clinical improvement in patients. This problem is confounded by the difficulty of investigating the neuronal effects of DBS in situ, and the impossibility of measuring the induced current in vivo. In our recent computational work using a quasi-static finite element (FEM) model we have quantitatively shown that the properties of the depth electrode–brain interface (EBI) have a significant effect on the electric field induced in the brain volume surrounding the DBS electrode. In the present work, we explore the influence of the reactivity of the EBI on the crossing electric current using the Fourier-FEM approach to allow the investigation of waveform attenuation in the time domain. Results showed that the EBI affected the waveform shaping differently at different post-implantation stages, and that this in turn had implications on induced current distribution across the EBI. Furthermore, we investigated whether hypothetical waveforms, which were shown to have potential usefulness for neural stimulation but are not yet applied clinically, would have any advantage over the currently used square pulse. In conclusion, the influence of reactivity of the EBI on the crossing stimulation current in therapeutic DBS is significant, and affects the predictive estimation of current distribution around the implanted DBS electrode in the human brain. |
Research Group | Biophysics and Bioengineering group |
Publisher | Pergamon |
Journal | Neuroscience |
ISSN | 0306-4522 |
Publication dates | |
15 Oct 2008 | |
Publication process dates | |
Deposited | 21 May 2009 |
Output status | Published |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.neuroscience.2008.07.051 |
Language | English |
https://repository.mdx.ac.uk/item/81q52
57
total views0
total downloads3
views this month0
downloads this month
Export as
Related outputs
Forearm motion and hand grasp prediction based on target muscle bioimpedance for Human-Machine Interaction
Yao, T., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2025. Forearm motion and hand grasp prediction based on target muscle bioimpedance for Human-Machine Interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 33, pp. 760-769. https://doi.org/10.1109/TNSRE.2025.3538609Chest EIT based on Lagrange Multipliers reconstruction
Seifnaraghi, N. and Bayford, R. 2024. Chest EIT based on Lagrange Multipliers reconstruction. Xie, L., Fu, F., Long, Y., Ge, H., Pan, Q. and Zhao, Z. (ed.) 24th International Conference on Biomedical Applications of Electrical Impedance Tomography. Hangzhou, China 27 - 30 Jun 2024A 1.76 mW, 355-fps, electrical impedance tomography system with a simple time-to-digital impedance readout for fast neonatal lung imaging
Li, J., Jiang, D., Wu, Y., Zhang, J., Seifnaraghi, N., Bayford, R. and Demosthenous, A. 2024. A 1.76 mW, 355-fps, electrical impedance tomography system with a simple time-to-digital impedance readout for fast neonatal lung imaging. IEEE Journal of Solid-State Circuits. https://doi.org/10.1109/JSSC.2024.3434638Progress in electrical impedance tomography and bioimpedance
Bayford, R., Sadleir, R., Frerichs, I., Oh, T. and Leonhardt, S. 2024. Progress in electrical impedance tomography and bioimpedance. Physiological Measurement. 45 (8). https://doi.org/10.1088/1361-6579/ad68c1A current DAC based current generator with fourth-order current-mode filter for electrical impedance tomography
Li, J., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2024. A current DAC based current generator with fourth-order current-mode filter for electrical impedance tomography. 2024 IEEE International Symposium on Circuits and Systems. Singapore, Singapore 19 - 22 May 2024 IEEE. pp. 1-4 https://doi.org/10.1109/iscas58744.2024.10558679Clinical utility of ultrasound imaging for measuring anterior thigh thickness after anterior cruciate ligament injury in an individual patient to assess postsurgery outcome
Mechelli, F., Bayford, R., Garelick, H., Stokes, M. and Agyapong-Badu, S. 2023. Clinical utility of ultrasound imaging for measuring anterior thigh thickness after anterior cruciate ligament injury in an individual patient to assess postsurgery outcome. Case Reports in Orthopedics. 2023. https://doi.org/10.1155/2023/6672951Live demonstration: real time imaging with electrical impedance tomography
Zohoori, S., Rahal, M., Habibollahi, M., Jiang, D., Wu, Y., Bardill, A., Seifnaraghi, N., Yerworth, R., Bayford, R. and Demosthenous, A. 2023. Live demonstration: real time imaging with electrical impedance tomography. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, Canada 19 - 21 Oct 2023 IEEE. https://doi.org/10.1109/BioCAS58349.2023.10388836Live demonstration: a bioimpedance-based robotic hand control platform using a customised neural network
Yao, T., Almarri, N., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2023. Live demonstration: a bioimpedance-based robotic hand control platform using a customised neural network. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, Canada 19 - 21 Oct 2023 IEEE. https://doi.org/10.1109/biocas58349.2023.10389001A compact neural network for high accuracy bioimpedance-based hand gesture recognition
Yao, T., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2023. A compact neural network for high accuracy bioimpedance-based hand gesture recognition. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, Canada 19 - 21 Oct 2023 IEEE. https://doi.org/10.1109/biocas58349.2023.10388679Effect of routine suction on lung aeration in critically ill neonates and young infants measured with electrical impedance tomography
Händel, C., Becher, T., Miedema, M., Kallio, M., Papadouri, T., Waldmann, A.D., Sophocleous, L., Yerworth, R., Bayford, R., Rimensberger, P.C., van Kaam, A.H. and Frerichs, I. 2023. Effect of routine suction on lung aeration in critically ill neonates and young infants measured with electrical impedance tomography. Scientific Reports. 13 (1). https://doi.org/10.1038/s41598-023-42965-7An 89.3% current efficiency, sub 0.1% THD current driver for electrical impedance tomography
Li, J., Jiang, D., Wu, Y, Neshatvar, N., Bayford, R. and Demosthenous, A. 2023. An 89.3% current efficiency, sub 0.1% THD current driver for electrical impedance tomography. IEEE Transactions on Circuits and Systems II: Express Briefs. 70 (10), pp. 3742-3746. https://doi.org/10.1109/TCSII.2023.3294753Thermodynamics of mechanopeptide sidechains
Haque, M., Kadir, M. and Bayford, R. 2023. Thermodynamics of mechanopeptide sidechains. AIP Advances. 13 (8). https://doi.org/10.1063/5.0154129Effects of patient recumbency position on neonatal chest EIT
Seifnaraghi, N., De Gelidi, S., Frerichs, I., Kallio, M., Sorantin, M., Demosthenous, A. and Bayford, R. 2023. Effects of patient recumbency position on neonatal chest EIT. IEEE Access. 11, pp. 68257 - 68268. https://doi.org/10.1109/ACCESS.2023.3290904Prolonged continuous monitoring of regional lung function in infants with respiratory failure
Becher, T.H., Miedema, M., Kallio, M., Papadouri, T., Karaoli, C., Sophocleous, L., Rahtu, M., Van Leuteren, R.W., Waldmann, A.D., Strodthoff, C., Yerworth, R., Dupré, A., Benissa, M.-R., Nordebo, S., Khodadad, D., Bayford, R., Vliegenthart, R., Rimensberger, P.C., Van Kaam, A.H. and Frerichs, I. 2022. Prolonged continuous monitoring of regional lung function in infants with respiratory failure . Annals of the American Thoracic Society. 19 (6), pp. 873-1080. https://doi.org/10.1513/AnnalsATS.202005-562OCA low power, low THD current driver with discrete common-mode feedback for EIT applications
Li, J., Wu, Y., Bayford, R., Jiang, D. and Demosthenous, A. 2022. A low power, low THD current driver with discrete common-mode feedback for EIT applications . 29th IEEE International Conference on Electronics, Circuits and Systems. Glasgow, UK 24 - 26 Oct 2022 IEEE. https://doi.org/10.1109/ICECS202256217.2022.9971123Generation of anatomically inspired human airway tree using electrical impedance tomography: A method to estimate regional lung filling characteristics
Zamani, M., Kallio, M., Bayford, R. and Demosthenous, A. 2022. Generation of anatomically inspired human airway tree using electrical impedance tomography: A method to estimate regional lung filling characteristics. IEEE Transactions on Medical Imaging. 41 (5), pp. 1125-1137. https://doi.org/10.1109/TMI.2021.3136434Advances in electrical impedance tomography and bioimpedance including applications in COVID-19 diagnosis and treatment
Bayford, R., Rosalind, S. and Frerichs, I. 2022. Advances in electrical impedance tomography and bioimpedance including applications in COVID-19 diagnosis and treatment. Physiological Measurement. 43 (2). https://doi.org/10.1088/1361-6579/ac4e6cA low-power recursive I/Q signal generator and current driver for bioimpedance applications
Hanzaee, F., Neshatvar, N., Rahal, M., Jiang, D., Bayford, R. and Demosthenous, A. 2022. A low-power recursive I/Q signal generator and current driver for bioimpedance applications. IEEE Transactions on Circuits and Systems II: Express Briefs. 69 (10), pp. 4108-4112. https://doi.org/10.1109/TCSII.2022.3187076High frame rate electrical impedance tomography system for monitoring of regional lung ventilation
Rahal, M., Dai, J., Wu, Y., Bardill, A., Bayford, R. and Demosthenous, A. 2022. High frame rate electrical impedance tomography system for monitoring of regional lung ventilation. 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Glasgow, Scotland, United Kingdom 11 - 15 Jul 2022 IEEE. pp. 2487-2490 https://doi.org/10.1109/EMBC48229.2022.9871479Development of a biosensor for fast point-of-care blood analysis of Troponin
Bayford, R., Damaso, R., Jiang, D., Rahal, M. and Demosthenous, A. 2022. Development of a biosensor for fast point-of-care blood analysis of Troponin. 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Glasgow, Scotland, United Kingdom 11 - 15 Jul 2022 IEEE. pp. 910-913 https://doi.org/10.1109/EMBC48229.2022.9871851Bronchodilator effect on regional lung function in pediatric viral lower respiratory tract infections
Strodthoff, C., Kähkönen, T., Bayford, R., Becher, T., Frerichs, I. and Kallio, M. 2022. Bronchodilator effect on regional lung function in pediatric viral lower respiratory tract infections. Physiological Measurement. 43 (10). https://doi.org/10.1088/1361-6579/ac9450