Deep analysis of EIT dataset to classify apnea and non-apnea cases in neonatal patients
Article
Vahabi, N., Yerworth, R., Miedema, M., van Kaam, A., Bayford, R. and Demosthenous, A. 2021. Deep analysis of EIT dataset to classify apnea and non-apnea cases in neonatal patients. IEEE Access. 9, pp. 25131-25139. https://doi.org/10.1109/ACCESS.2021.3056558
Type | Article |
---|---|
Title | Deep analysis of EIT dataset to classify apnea and non-apnea cases in neonatal patients |
Authors | Vahabi, N., Yerworth, R., Miedema, M., van Kaam, A., Bayford, R. and Demosthenous, A. |
Abstract | Electrical impedance tomography (EIT) is a non-invasive imaging modality that can provide information about dynamic volume changes in the lung. This type of image does not represent structural lung information but provides changes in regions over time. EIT raw datasets or boundary voltages are comprised of two components, termed real and imaginary parts, due to the nature of cell membranes of the lung tissue. In this paper, we present the first use of EIT boundary voltage data obtained from infants for the automatic detection of apnea using machine learning, and investigate which components contain the main features of apnea events. We selected 15 premature neonates with an episode of apnea in their breathing pattern and applied a hybrid classification model that combines two established methods; a pre-trained transfer learning method with a convolutional neural network with 50 layers deep (ResNet50) architecture, and a support vector machine (SVM) classifier. ResNet50 training was undertaken using an ImageNet dataset. The learnt parameters were fed into the SVM classifier to identify apnea and non-apnea cases from neonates' EIT datasets. The performance of our classification approach on the real part, the imaginary part and the absolute value of EIT boundary voltage datasets were investigated. We discovered that the imaginary component contained a larger proportion of apnea features. |
Keywords | Tomography; Pediatrics; Image reconstruction; Lung; Electrodes; Support vector machines; Training; Apnea classification algorithm; EIT data analysis; Electrical impedance tomography; Pre-trained ResNet50; Transfer learning algorithm |
Sustainable Development Goals | 3 Good health and well-being |
Middlesex University Theme | Health & Wellbeing |
Research Group | Biophysics and Bioengineering group |
Publisher | IEEE |
Journal | IEEE Access |
ISSN | |
Electronic | 2169-3536 |
Publication dates | |
Online | 02 Feb 2021 |
12 Feb 2021 | |
Publication process dates | |
Submitted | 29 Dec 2020 |
Accepted | 23 Jan 2021 |
Deposited | 27 Nov 2023 |
Output status | Published |
Publisher's version | License File Access Level Open |
Digital Object Identifier (DOI) | https://doi.org/10.1109/ACCESS.2021.3056558 |
Web of Science identifier | WOS:000617754300001 |
Language | English |
https://repository.mdx.ac.uk/item/8zv15
Download files
Publisher's version
Deep_Analysis_of_EIT_Dataset_to_Classify_Apnea_and_Non-Apnea_Cases_in_Neonatal_Patients.pdf | ||
License: CC BY 4.0 | ||
File access level: Open |
69
total views47
total downloads1
views this month1
downloads this month
Export as
Related outputs
Forearm motion and hand grasp prediction based on target muscle bioimpedance for Human-Machine Interaction
Yao, T., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2025. Forearm motion and hand grasp prediction based on target muscle bioimpedance for Human-Machine Interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 33, pp. 760-769. https://doi.org/10.1109/TNSRE.2025.3538609Chest EIT based on Lagrange Multipliers reconstruction
Seifnaraghi, N. and Bayford, R. 2024. Chest EIT based on Lagrange Multipliers reconstruction. Xie, L., Fu, F., Long, Y., Ge, H., Pan, Q. and Zhao, Z. (ed.) 24th International Conference on Biomedical Applications of Electrical Impedance Tomography. Hangzhou, China 27 - 30 Jun 2024A 1.76 mW, 355-fps, electrical impedance tomography system with a simple time-to-digital impedance readout for fast neonatal lung imaging
Li, J., Jiang, D., Wu, Y., Zhang, J., Seifnaraghi, N., Bayford, R. and Demosthenous, A. 2024. A 1.76 mW, 355-fps, electrical impedance tomography system with a simple time-to-digital impedance readout for fast neonatal lung imaging. IEEE Journal of Solid-State Circuits. https://doi.org/10.1109/JSSC.2024.3434638Progress in electrical impedance tomography and bioimpedance
Bayford, R., Sadleir, R., Frerichs, I., Oh, T. and Leonhardt, S. 2024. Progress in electrical impedance tomography and bioimpedance. Physiological Measurement. 45 (8). https://doi.org/10.1088/1361-6579/ad68c1A current DAC based current generator with fourth-order current-mode filter for electrical impedance tomography
Li, J., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2024. A current DAC based current generator with fourth-order current-mode filter for electrical impedance tomography. 2024 IEEE International Symposium on Circuits and Systems. Singapore, Singapore 19 - 22 May 2024 IEEE. pp. 1-4 https://doi.org/10.1109/iscas58744.2024.10558679Clinical utility of ultrasound imaging for measuring anterior thigh thickness after anterior cruciate ligament injury in an individual patient to assess postsurgery outcome
Mechelli, F., Bayford, R., Garelick, H., Stokes, M. and Agyapong-Badu, S. 2023. Clinical utility of ultrasound imaging for measuring anterior thigh thickness after anterior cruciate ligament injury in an individual patient to assess postsurgery outcome. Case Reports in Orthopedics. 2023. https://doi.org/10.1155/2023/6672951Live demonstration: real time imaging with electrical impedance tomography
Zohoori, S., Rahal, M., Habibollahi, M., Jiang, D., Wu, Y., Bardill, A., Seifnaraghi, N., Yerworth, R., Bayford, R. and Demosthenous, A. 2023. Live demonstration: real time imaging with electrical impedance tomography. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, Canada 19 - 21 Oct 2023 IEEE. https://doi.org/10.1109/BioCAS58349.2023.10388836Live demonstration: a bioimpedance-based robotic hand control platform using a customised neural network
Yao, T., Almarri, N., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2023. Live demonstration: a bioimpedance-based robotic hand control platform using a customised neural network. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, Canada 19 - 21 Oct 2023 IEEE. https://doi.org/10.1109/biocas58349.2023.10389001A compact neural network for high accuracy bioimpedance-based hand gesture recognition
Yao, T., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2023. A compact neural network for high accuracy bioimpedance-based hand gesture recognition. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, Canada 19 - 21 Oct 2023 IEEE. https://doi.org/10.1109/biocas58349.2023.10388679Effect of routine suction on lung aeration in critically ill neonates and young infants measured with electrical impedance tomography
Händel, C., Becher, T., Miedema, M., Kallio, M., Papadouri, T., Waldmann, A.D., Sophocleous, L., Yerworth, R., Bayford, R., Rimensberger, P.C., van Kaam, A.H. and Frerichs, I. 2023. Effect of routine suction on lung aeration in critically ill neonates and young infants measured with electrical impedance tomography. Scientific Reports. 13 (1). https://doi.org/10.1038/s41598-023-42965-7An 89.3% current efficiency, sub 0.1% THD current driver for electrical impedance tomography
Li, J., Jiang, D., Wu, Y, Neshatvar, N., Bayford, R. and Demosthenous, A. 2023. An 89.3% current efficiency, sub 0.1% THD current driver for electrical impedance tomography. IEEE Transactions on Circuits and Systems II: Express Briefs. 70 (10), pp. 3742-3746. https://doi.org/10.1109/TCSII.2023.3294753Thermodynamics of mechanopeptide sidechains
Haque, M., Kadir, M. and Bayford, R. 2023. Thermodynamics of mechanopeptide sidechains. AIP Advances. 13 (8). https://doi.org/10.1063/5.0154129Effects of patient recumbency position on neonatal chest EIT
Seifnaraghi, N., De Gelidi, S., Frerichs, I., Kallio, M., Sorantin, M., Demosthenous, A. and Bayford, R. 2023. Effects of patient recumbency position on neonatal chest EIT. IEEE Access. 11, pp. 68257 - 68268. https://doi.org/10.1109/ACCESS.2023.3290904Prolonged continuous monitoring of regional lung function in infants with respiratory failure
Becher, T.H., Miedema, M., Kallio, M., Papadouri, T., Karaoli, C., Sophocleous, L., Rahtu, M., Van Leuteren, R.W., Waldmann, A.D., Strodthoff, C., Yerworth, R., Dupré, A., Benissa, M.-R., Nordebo, S., Khodadad, D., Bayford, R., Vliegenthart, R., Rimensberger, P.C., Van Kaam, A.H. and Frerichs, I. 2022. Prolonged continuous monitoring of regional lung function in infants with respiratory failure . Annals of the American Thoracic Society. 19 (6), pp. 873-1080. https://doi.org/10.1513/AnnalsATS.202005-562OCA low power, low THD current driver with discrete common-mode feedback for EIT applications
Li, J., Wu, Y., Bayford, R., Jiang, D. and Demosthenous, A. 2022. A low power, low THD current driver with discrete common-mode feedback for EIT applications . 29th IEEE International Conference on Electronics, Circuits and Systems. Glasgow, UK 24 - 26 Oct 2022 IEEE. https://doi.org/10.1109/ICECS202256217.2022.9971123Generation of anatomically inspired human airway tree using electrical impedance tomography: A method to estimate regional lung filling characteristics
Zamani, M., Kallio, M., Bayford, R. and Demosthenous, A. 2022. Generation of anatomically inspired human airway tree using electrical impedance tomography: A method to estimate regional lung filling characteristics. IEEE Transactions on Medical Imaging. 41 (5), pp. 1125-1137. https://doi.org/10.1109/TMI.2021.3136434Advances in electrical impedance tomography and bioimpedance including applications in COVID-19 diagnosis and treatment
Bayford, R., Rosalind, S. and Frerichs, I. 2022. Advances in electrical impedance tomography and bioimpedance including applications in COVID-19 diagnosis and treatment. Physiological Measurement. 43 (2). https://doi.org/10.1088/1361-6579/ac4e6cA low-power recursive I/Q signal generator and current driver for bioimpedance applications
Hanzaee, F., Neshatvar, N., Rahal, M., Jiang, D., Bayford, R. and Demosthenous, A. 2022. A low-power recursive I/Q signal generator and current driver for bioimpedance applications. IEEE Transactions on Circuits and Systems II: Express Briefs. 69 (10), pp. 4108-4112. https://doi.org/10.1109/TCSII.2022.3187076High frame rate electrical impedance tomography system for monitoring of regional lung ventilation
Rahal, M., Dai, J., Wu, Y., Bardill, A., Bayford, R. and Demosthenous, A. 2022. High frame rate electrical impedance tomography system for monitoring of regional lung ventilation. 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Glasgow, Scotland, United Kingdom 11 - 15 Jul 2022 IEEE. pp. 2487-2490 https://doi.org/10.1109/EMBC48229.2022.9871479Development of a biosensor for fast point-of-care blood analysis of Troponin
Bayford, R., Damaso, R., Jiang, D., Rahal, M. and Demosthenous, A. 2022. Development of a biosensor for fast point-of-care blood analysis of Troponin. 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Glasgow, Scotland, United Kingdom 11 - 15 Jul 2022 IEEE. pp. 910-913 https://doi.org/10.1109/EMBC48229.2022.9871851Bronchodilator effect on regional lung function in pediatric viral lower respiratory tract infections
Strodthoff, C., Kähkönen, T., Bayford, R., Becher, T., Frerichs, I. and Kallio, M. 2022. Bronchodilator effect on regional lung function in pediatric viral lower respiratory tract infections. Physiological Measurement. 43 (10). https://doi.org/10.1088/1361-6579/ac9450