Emerging applications of nanotechnology for diagnosis and therapy of disease: a review
Article
Bayford, R., Rademacher, T., Roitt, I. and Wang, S. 2017. Emerging applications of nanotechnology for diagnosis and therapy of disease: a review. Physiological Measurement. 38 (8). https://doi.org/10.1088/1361-6579/aa7182
Type | Article |
---|---|
Title | Emerging applications of nanotechnology for diagnosis and therapy of disease: a review |
Authors | Bayford, R., Rademacher, T., Roitt, I. and Wang, S. |
Abstract | Nanotechnology is of increasing interest in the fields of medicine and physiology over recent years. Its application could considerably improve disease detection and therapy, and although the potential is considerable, there are still many challenges, which need to be addressed before it is accepted in routine clinical use. This review focuses on emerging applications that nanotechnology could enhance or provide new approaches in diagnoses and therapy. The main focus of recent research centres on targeted therapies and enhancing imaging; however, the introduction of nanomaterial into the human body must be controlled, as there are many issues with possible toxicity and long-term effects. Despite these issues, the potential for nanotechnology to provide new methods of combating cancer and other disease conditions is considerable. There are still key challenges for researchers in this field, including the means of delivery and targetting in the body to provide effective treatment for specific disease conditions. Nanoparticles are difficult to measure due to the size and physical properties; hence there is still a great need to improve physiological measurements method in the field to ascertain how effective their use is in the human subject. This review is a brief snapshot into the fast changing research field of measurement and physiological links to nanoparticle use and its potential in the future. |
Research Group | Biophysics and Bioengineering group |
Publisher | Institute of Physics |
Journal | Physiological Measurement |
ISSN | 0967-3334 |
Publication dates | |
Online | 01 May 2017 |
24 Jul 2017 | |
Publication process dates | |
Deposited | 04 May 2017 |
Accepted | 28 Apr 2017 |
Output status | Published |
Accepted author manuscript | |
Copyright Statement | This is an author-created, un-copyedited version of an article accepted for publication/published in Physiological Measurement. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6579/aa7182 |
Digital Object Identifier (DOI) | https://doi.org/10.1088/1361-6579/aa7182 |
Language | English |
https://repository.mdx.ac.uk/item/86yxx
Download files
90
total views62
total downloads2
views this month3
downloads this month
Export as
Related outputs
Forearm motion and hand grasp prediction based on target muscle bioimpedance for Human-Machine Interaction
Yao, T., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2025. Forearm motion and hand grasp prediction based on target muscle bioimpedance for Human-Machine Interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 33, pp. 760-769. https://doi.org/10.1109/TNSRE.2025.3538609Chest EIT based on Lagrange Multipliers reconstruction
Seifnaraghi, N. and Bayford, R. 2024. Chest EIT based on Lagrange Multipliers reconstruction. Xie, L., Fu, F., Long, Y., Ge, H., Pan, Q. and Zhao, Z. (ed.) 24th International Conference on Biomedical Applications of Electrical Impedance Tomography. Hangzhou, China 27 - 30 Jun 2024Sex-specific HLA alleles contribute to the modulation of COVID-19 severity
Spartano, S., Faggiano, M.V., Guidi, G., D’Ambrosio, P., Vaisfeld, A., Novelli, A., Falqui, S., Cingolani, A., Lambertenghi, L., Visentin, A., Azzini, A., Righi, E., Trecarichi, E., Mazzitelli, M., Coletti, S., Mous, J., Rademacher, T.W., Torti, C., Tacconelli, E., Fantoni, M., Cauda, R. and Tiziano, F. 2024. Sex-specific HLA alleles contribute to the modulation of COVID-19 severity. International Journal of Molecular Sciences. 25 (23). https://doi.org/10.3390/ijms252313198A 1.76 mW, 355-fps, electrical impedance tomography system with a simple time-to-digital impedance readout for fast neonatal lung imaging
Li, J., Jiang, D., Wu, Y., Zhang, J., Seifnaraghi, N., Bayford, R. and Demosthenous, A. 2024. A 1.76 mW, 355-fps, electrical impedance tomography system with a simple time-to-digital impedance readout for fast neonatal lung imaging. IEEE Journal of Solid-State Circuits. https://doi.org/10.1109/JSSC.2024.3434638Progress in electrical impedance tomography and bioimpedance
Bayford, R., Sadleir, R., Frerichs, I., Oh, T. and Leonhardt, S. 2024. Progress in electrical impedance tomography and bioimpedance. Physiological Measurement. 45 (8). https://doi.org/10.1088/1361-6579/ad68c1A current DAC based current generator with fourth-order current-mode filter for electrical impedance tomography
Li, J., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2024. A current DAC based current generator with fourth-order current-mode filter for electrical impedance tomography. 2024 IEEE International Symposium on Circuits and Systems. Singapore, Singapore 19 - 22 May 2024 IEEE. pp. 1-4 https://doi.org/10.1109/iscas58744.2024.10558679Clinical utility of ultrasound imaging for measuring anterior thigh thickness after anterior cruciate ligament injury in an individual patient to assess postsurgery outcome
Mechelli, F., Bayford, R., Garelick, H., Stokes, M. and Agyapong-Badu, S. 2023. Clinical utility of ultrasound imaging for measuring anterior thigh thickness after anterior cruciate ligament injury in an individual patient to assess postsurgery outcome. Case Reports in Orthopedics. 2023. https://doi.org/10.1155/2023/6672951Live demonstration: real time imaging with electrical impedance tomography
Zohoori, S., Rahal, M., Habibollahi, M., Jiang, D., Wu, Y., Bardill, A., Seifnaraghi, N., Yerworth, R., Bayford, R. and Demosthenous, A. 2023. Live demonstration: real time imaging with electrical impedance tomography. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, Canada 19 - 21 Oct 2023 IEEE. https://doi.org/10.1109/BioCAS58349.2023.10388836Live demonstration: a bioimpedance-based robotic hand control platform using a customised neural network
Yao, T., Almarri, N., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2023. Live demonstration: a bioimpedance-based robotic hand control platform using a customised neural network. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, Canada 19 - 21 Oct 2023 IEEE. https://doi.org/10.1109/biocas58349.2023.10389001A compact neural network for high accuracy bioimpedance-based hand gesture recognition
Yao, T., Wu, Y., Jiang, D., Bayford, R. and Demosthenous, A. 2023. A compact neural network for high accuracy bioimpedance-based hand gesture recognition. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, Canada 19 - 21 Oct 2023 IEEE. https://doi.org/10.1109/biocas58349.2023.10388679Effect of routine suction on lung aeration in critically ill neonates and young infants measured with electrical impedance tomography
Händel, C., Becher, T., Miedema, M., Kallio, M., Papadouri, T., Waldmann, A.D., Sophocleous, L., Yerworth, R., Bayford, R., Rimensberger, P.C., van Kaam, A.H. and Frerichs, I. 2023. Effect of routine suction on lung aeration in critically ill neonates and young infants measured with electrical impedance tomography. Scientific Reports. 13 (1). https://doi.org/10.1038/s41598-023-42965-7An 89.3% current efficiency, sub 0.1% THD current driver for electrical impedance tomography
Li, J., Jiang, D., Wu, Y, Neshatvar, N., Bayford, R. and Demosthenous, A. 2023. An 89.3% current efficiency, sub 0.1% THD current driver for electrical impedance tomography. IEEE Transactions on Circuits and Systems II: Express Briefs. 70 (10), pp. 3742-3746. https://doi.org/10.1109/TCSII.2023.3294753Thermodynamics of mechanopeptide sidechains
Haque, M., Kadir, M. and Bayford, R. 2023. Thermodynamics of mechanopeptide sidechains. AIP Advances. 13 (8). https://doi.org/10.1063/5.0154129Effects of patient recumbency position on neonatal chest EIT
Seifnaraghi, N., De Gelidi, S., Frerichs, I., Kallio, M., Sorantin, M., Demosthenous, A. and Bayford, R. 2023. Effects of patient recumbency position on neonatal chest EIT. IEEE Access. 11, pp. 68257 - 68268. https://doi.org/10.1109/ACCESS.2023.3290904Prolonged continuous monitoring of regional lung function in infants with respiratory failure
Becher, T.H., Miedema, M., Kallio, M., Papadouri, T., Karaoli, C., Sophocleous, L., Rahtu, M., Van Leuteren, R.W., Waldmann, A.D., Strodthoff, C., Yerworth, R., Dupré, A., Benissa, M.-R., Nordebo, S., Khodadad, D., Bayford, R., Vliegenthart, R., Rimensberger, P.C., Van Kaam, A.H. and Frerichs, I. 2022. Prolonged continuous monitoring of regional lung function in infants with respiratory failure . Annals of the American Thoracic Society. 19 (6), pp. 873-1080. https://doi.org/10.1513/AnnalsATS.202005-562OCA low power, low THD current driver with discrete common-mode feedback for EIT applications
Li, J., Wu, Y., Bayford, R., Jiang, D. and Demosthenous, A. 2022. A low power, low THD current driver with discrete common-mode feedback for EIT applications . 29th IEEE International Conference on Electronics, Circuits and Systems. Glasgow, UK 24 - 26 Oct 2022 IEEE. https://doi.org/10.1109/ICECS202256217.2022.9971123Generation of anatomically inspired human airway tree using electrical impedance tomography: A method to estimate regional lung filling characteristics
Zamani, M., Kallio, M., Bayford, R. and Demosthenous, A. 2022. Generation of anatomically inspired human airway tree using electrical impedance tomography: A method to estimate regional lung filling characteristics. IEEE Transactions on Medical Imaging. 41 (5), pp. 1125-1137. https://doi.org/10.1109/TMI.2021.3136434Advances in electrical impedance tomography and bioimpedance including applications in COVID-19 diagnosis and treatment
Bayford, R., Rosalind, S. and Frerichs, I. 2022. Advances in electrical impedance tomography and bioimpedance including applications in COVID-19 diagnosis and treatment. Physiological Measurement. 43 (2). https://doi.org/10.1088/1361-6579/ac4e6cA low-power recursive I/Q signal generator and current driver for bioimpedance applications
Hanzaee, F., Neshatvar, N., Rahal, M., Jiang, D., Bayford, R. and Demosthenous, A. 2022. A low-power recursive I/Q signal generator and current driver for bioimpedance applications. IEEE Transactions on Circuits and Systems II: Express Briefs. 69 (10), pp. 4108-4112. https://doi.org/10.1109/TCSII.2022.3187076High frame rate electrical impedance tomography system for monitoring of regional lung ventilation
Rahal, M., Dai, J., Wu, Y., Bardill, A., Bayford, R. and Demosthenous, A. 2022. High frame rate electrical impedance tomography system for monitoring of regional lung ventilation. 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Glasgow, Scotland, United Kingdom 11 - 15 Jul 2022 IEEE. pp. 2487-2490 https://doi.org/10.1109/EMBC48229.2022.9871479Development of a biosensor for fast point-of-care blood analysis of Troponin
Bayford, R., Damaso, R., Jiang, D., Rahal, M. and Demosthenous, A. 2022. Development of a biosensor for fast point-of-care blood analysis of Troponin. 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Glasgow, Scotland, United Kingdom 11 - 15 Jul 2022 IEEE. pp. 910-913 https://doi.org/10.1109/EMBC48229.2022.9871851Bronchodilator effect on regional lung function in pediatric viral lower respiratory tract infections
Strodthoff, C., Kähkönen, T., Bayford, R., Becher, T., Frerichs, I. and Kallio, M. 2022. Bronchodilator effect on regional lung function in pediatric viral lower respiratory tract infections. Physiological Measurement. 43 (10). https://doi.org/10.1088/1361-6579/ac9450