Physical characteristics underpinning repetitive lunging in fencing
Article
Turner, A., Marshall, G., Philips, J., Noto, A., Buttigieg, C., Chavda, S., Downing, W., Atlay, N., Dimitriou, L. and Kilduff, L. 2016. Physical characteristics underpinning repetitive lunging in fencing. The Journal of Strength and Conditioning Research. 30 (11), pp. 3134-3139. https://doi.org/10.1519/JSC.0000000000001402
Type | Article |
---|---|
Title | Physical characteristics underpinning repetitive lunging in fencing |
Authors | Turner, A., Marshall, G., Philips, J., Noto, A., Buttigieg, C., Chavda, S., Downing, W., Atlay, N., Dimitriou, L. and Kilduff, L. |
Abstract | Given the repetitive demand to execute lunging and changes in direction within fencing, the ability to sustain these at maximal capacity is fundamental to performance. The aim of this study was threefold. Firstly to provide normative values for this variable referred to as repeat lunge ability (RLA) and secondly to identify the physical characteristics that underpin it. Thirdly, was to establish if a cause and effect relationship existed by training the associated characteristics. Assessment of lower body power, reactive strength, speed, change of direction speed (CODS) and a sport specific RLA were conducted on senior and junior elite male fencers (n = 36). Fencers were on average (± SD) 18.9 ± 3.2 years of age, 174.35 ± 10.42 cm tall, 70.67 ± 7.35 kg in mass, and 8.5 ± 4.2 years fencing experience. The RLA test had average work times of 16.03 s ± 1.40 and demonstrated "large" to "very large" associations with all tested variables, but in particular CODS (r = .70) and standing broad jump (SBJ; r = -68). Through linear regression analysis, these also provided a two-predictor model accounting for 61% of the common variance associated with RLA. A cause and effect relationship with SBJ and CODS was confirmed by the training group, where RLA performance in these fencers improved from 15.80 ± 1.07 s to 14.90 ± 0.86 s, with the magnitude of change reported as "moderate" (ES = 0.93). Concurrent improvements were also noted in both SBJ (216.86 cm ± 17.15 vs. 221.71 ± 17.59 cm) and CODS (4.44 ± 0.29 s s. 4.31 ± 0.09 s) and while differences were only significant in SBJ, magnitudes of change were classed as "small" (ES = 0.28) and "moderate" (ES = 0.61)respectively. In conclusion, to improve RLA strength and conditioning coaches should focus on improving lower-body power and reactive strength, noting that jump training and plyometrics designed to enhance horizontal propulsion may be most effective, and translate to improvement in CODS also. |
Keywords | speed; endurance; epee; foil; sabre |
Research Group | Strength and Conditioning at the London Sport Institute |
Publisher | Lippincott, Williams and Wilkins |
Journal | The Journal of Strength and Conditioning Research |
ISSN | 1064-8011 |
Electronic | 1533-4287 |
Publication dates | |
01 Nov 2016 | |
Publication process dates | |
Deposited | 12 Apr 2016 |
Submitted | 31 Mar 2015 |
Accepted | 19 Feb 2016 |
Output status | Published |
Accepted author manuscript | |
Copyright Statement | This is a non-final version of an article published in final form in: Turner, A.N. et al., 2016. Physical Characteristics Underpinning Repetitive Lunging in Fencing. Journal of Strength and Conditioning Research, 30(11), pp.3134–3139. Available at: http://dx.doi.org/10.1519/jsc.0000000000001402. |
Digital Object Identifier (DOI) | https://doi.org/10.1519/JSC.0000000000001402 |
Web of Science identifier | WOS:000387155600021 |
Language | English |
https://repository.mdx.ac.uk/item/86359
Download files
64
total views25
total downloads6
views this month1
downloads this month